Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Stray capacitance effects on SWR at 868Mhz

By: M0AWS
8 March 2024 at 12:25

Following on from my last article on improving the Heltec ESP32 v3 antennas I found during the installation of the 90 degree SMA connector that the device was very sensitive to stray capacitance from things around it. After reconnecting my VNA I found the SWR curve would change substantially depending on what the device was near and so I set about rectifying this.

I decided to remove all the insulation from the single radial inside the unit and then added two more radials to increase the ground for the antenna to tune against. I then removed the N type plug with the antenna connected to it and made a new antenna from a piece of 1.5mm solid core insulated mains wire connected directly to the N type socket, without using an N type plug. Tuning to resonance was much easier than before and I soon had the SWR down to 1.2:1. Moving the device around and placing near to other objects the SWR curve was now much more stable than before with only very slight changes in curve shape.

M0AWS Updated 868Mhz Antenna
M0AWS Updated 868Mhz Antenna

Making this change to the 868Mhz antenna has shown an improvement in signal strength from my node-1 device of almost +0.5dB, every dB counts when you only have 100mW to play with!

The Bluetooth antenna update has made a massive improvement to the usability of the device via the iOS Meshtastic app. Being able to have a reliable, solid connection from anywhere in the house is great and I no longer lose messages because I’ve strayed outside the range of the Bluetooth connection.

I now have 2 new Heltec ESP32 v3 devices on the way to me and will be getting those configured and operational outside with external antennas in the hope of hearing some nodes locally to me.

More soon …

Multi-Band Delta Loop Antenna

By: M0AWS
15 January 2024 at 16:45

This antenna modelling session came about after a conversation with Michael, DK1MI on the Matrix. I believe the antenna design was originally done by Artur, M0PLK with reviews being on EHAM.

The antenna takes the form of a simple inverted triangular loop with a 5.8m flat top and two diagonals each 5.6m long coming down to a point. The antenna is fed in the centre of the flat top with 450 Ohm open ladder line and a 4:1 Balun. This antenna will require an ATU on all bands as the modelling shows a very wide range of impedances at the feed point.

Multi-Band Delta Loop Antenna View
Multi-Band Delta Loop Antenna View

The design seems to suggest using two fixed aluminium tubes with the wire fed up through them for the two diagonal elements of the antenna however, it would probably be easier to use a pair of collapsable fibre glass poles (Not Carbon fibre) with the wire attached via some clips or tape.

I decided to model the antenna with the top horizontal wire 10m above ground putting the point of the triangle 5.2m above ground. I felt this was an achievable height for most HAMs. Lowering the antenna will raise the resultant angle of maximum radiation on all bands.

Looking at the 2D Far Field Plots (2DFFP) the antenna radiates through the loop as expected with a higher radiation angle on the lowest band and the lowest radiation angle on the highest band. The antenna is of course bi-directional and so could be rotated just 180 degrees to obtain global coverage.

On the 30m band the antenna has a very high angle of maximum radiation making it ideal for short distances. There is a little gain to be had at 25 degrees however, this is nowhere near the maximum but, will possibly aid working longer distances. A maximum gain of 5.31dBi is obtained at 72 Degrees on the 30m band.

Multi-Band Delta Loop Antenna 30m 2D Far Field Plot
Multi-Band Delta Loop Antenna 30m 2D Far Field Plot

On the 20m band the 2DFFP is fairly similar to that of the 30m band but, with 5.57dBi gain at a lower angle of 34 Degrees. This will provide excellent results on medium distance contacts and reasonable results on the long haul.

Multi-Band Delta Loop Antenna 20m 2D Far Field Plot
Multi-Band Delta Loop Antenna 20m 2D Far Field Plot

Once above 14Mhz things start to get more interesting. From the 17m band upwards the radiation pattern changes quite drastically and starts to provide some excellent gain at relatively low angles. This will improve the antenna’s DX performance considerably on the higher bands.

Looking at the 17m band the angle of maximum radiation is now down to 26 degrees with a gain of 7.64dBi. At 12 degrees there is a gain of 4.59dBi. This radiation pattern will make this antenna ideal for the medium to long haul contact with very little interference from NVIS signals.

Multi-Band Delta Loop Antenna 17m 2D Far Field Plot
Multi-Band Delta Loop Antenna 17m 2D Far Field Plot

The 15m band follows the trend with the angle of max radiation now down to 22 degrees with a max gain of 8.54dBi. Even at 10 degrees there is a gain of 5.34dBi which will be very welcome for DXing. There is slightly more near vertical incident skywave (NVIS) radiation on the 15m band and so the antenna should provide short, medium and long haul contacts with the latter being favoured.

Multi-Band Delta Loop Antenna 15m 2D Far Field Plot
Multi-Band Delta Loop Antenna 15m 2D Far Field Plot

Moving up to the 12m band the angle of maximum radiation now comes down to 18 degrees with a gain of 8.61dBi. There is also 5dBi of gain to be had at 8 degrees which is ideal for DXing. Unfortunately there is slightly more NVIS radiation on the 12m band than there is on the 15m band. I’m sure with a little change in height this could be reduced such that the antenna provides only low angle radiation.

Multi-Band Delta Loop Antenna 12m 2D Far Field Plot
Multi-Band Delta Loop Antenna 12m 2D Far Field Plot

Finally we reach the 10m band, this is where the antenna has the lowest angle of maximum radiation. With 8.56dBi gain at 16 Degrees, 5.59dBi at 8 degrees and a much reduced NVIS radiation. This antenna should be excellent for the long haul on 28-29Mhz. (It would also make an excellent 11m/CB antenna).

Multi-Band Delta Loop Antenna 10m 2D Far Field Plot
Multi-Band Delta Loop Antenna 10m 2D Far Field Plot

It’s interesting to note the similarities between this multi-band delta loop design and my Bi-Directional Slot Fed Antenna design. They both exhibit very similar radiation patterns and gain figures with the Slot Fed Antenna providing slightly more gain and an even lower angle of maximum radiation on the supported bands.

Overall this easy to construct multi-band delta loop antenna would be ideal for the HAM that just wants a single antenna for 30m and upwards or is looking to go portable. The only disadvantage is that a good Remote Auto ATU is required to provide matching of the antenna to the 50 ohm coax at the feed point. Something like the LDG RT100 would be an ideal ATU choice for this application and would remove the losses caused by having a high SWR on the coax feed to the antenna.

Using an ATU in the radio in the shack isn’t going to provide the same results as the coax cable from the antenna to the shack will become part of the antenna and will be detrimental to the antenna performance. It will also create high losses on the coax feed to the antenna due to high SWR being present over the length of the coaxial feed.

40m EFHW Vertical Phased Array

By: M0AWS
10 January 2024 at 16:47

I’ve been doing some antenna modelling and comparisons for John, W2VP comparing some phased and parasitic arrays. One of the phased arrays I modelled was an End-Fed-Half-Wave (EFHW) phased vertical array for the 40m band. It’s got such a nice radiation pattern that I thought I’d add it to my antenna pages here on the website for others to read too.

M0AWS 40m Band EFHW Phased Vertical Array Antenna View
M0AWS 40m Band EFHW Phased Vertical Array Antenna View

The EFHW Vertical Phased Array is as simple as two vertical half wave wires both of which are fed via their own 49:1 Unun. Wire 1 (radiator) is exactly 20m tall and wire 2 (reflector) is 21m tall. The space between them is exactly 10.5m.

This simple antenna arrangement gives a surprisingly good radiation pattern with a reasonable forward gain and front-to-back (FB) ratio.

M0AWS 40m Band EFHW Phased Vertical Array 3D Far Field Plot
M0AWS 40m Band EFHW Phased Vertical Array 3D Far Field Plot

The antenna has quite a wide beam width which is to be expected from a pair of phased verticals. The nice thing about this array is that it has very little in the way of high angle radiation. This makes this antenna ideal for long distance communications. This isn’t an antenna for local chatter!

M0AWS 40m Band EFHW Phased Vertical Array 2D Far Field Plot
M0AWS 40m Band EFHW Phased Vertical Array 2D Far Field Plot

The 2D Far Field Plot shows that the antenna has a forward gain of 3.16dBi at 19 degrees. This is some 8 degrees lower than a typical 1/4 wave vertical phased array. The array also has a very respectable front-to-back (FB) ratio of 20.53dB.

Both elements in the array will need to be fed via individual 49:1 Ununs with the reflector requiring a feed phase angle of 100 degrees. A 100 degree phase angle gives better performance than the typical 90 degree phase angle that is typically used for 1/4 wave arrays.

For such a simple design this antenna should give great DX results as long as you have the necessary supports for the two vertical wires and the space for the guy lines. If only my garden was much bigger and I had some large trees to hand!

Summary:

Radiator (Element 1): 20m
Reflector (Element 2): 21m
Reflector Feed Phase Angle: 100 Deg
Wire Dia: 4mm
Feed Type: 49:1 Unun on each vertical element and a phasing harness
Impedance: 50 Ohm
SWR: <1.5:1 across whole band

13m Multiband Vertical Antenna – 18 Month Summary

By: M0AWS
26 October 2023 at 08:43

Following on from the article I wrote about the performance of my multi band vertical antenna I’ve now put together a table showing it’s performance on each band as experienced over a period of 18 months.

It’s interesting to note the antenna wavelength measurements on each band as 13m (43FT) seems to be an almost perfect length for a simple multi band vertical HF antenna with excellent DX capabilities.

M0AWS 13m (43FT) Multiband Vertical HF Antenna Info
M0AWS 13m (43FT) Multiband Vertical HF Antenna Info (Click to Enlarge)

Looking at the information you can see that performance on the 160m band is poor. This is to be expected as the antenna is far too short for a band with such a long wavelength. I knew this would be the case from the outset and never planned to use this antenna on the 160m band. I’ve included the data here just for completeness. If you’re looking for a reasonable 160m band antenna that can fit into an average UK garden then take a look at my Inverted-L antenna article.

Performance on the 80m band is surprisingly good considering the antenna is only 1/6th of a wavelength long. With contacts into Indonesia achieved using relatively low power levels this antenna surprised me with its performance on the 80m band. A 1/4 wavelength antenna would of course perform better but, like all multi band vertical antennas for the HF bands there is always a compromise.

On the 60m band the antenna is pretty much a 1/4 wave vertical, it works great on this band and I’ve had a lot of fun chasing DX in the winter months. With the longest contact being into Brazil at 6144 miles this antenna performs extremely well for such a simple design.

On the 40m band performance is better still. With the antenna being just over a 1/4 wavelength long the point of max current is above ground level making this a very good DX antenna. With multiple contacts into Australia at distances over 10,000 miles this antenna is the ideal 40m band DX chaser for small gardens.

Moving up onto the 30m band this antenna now begins to really shine. Being a half wave long on 30m the point of max current is half way up the wire lowering the angle of radiation considerably. This results in excellent global coverage with contacts into Australia being a breeze. With the longest distance achieved being 11,776 miles into New Zealand this really is the goto antenna for fans of the 30m band with small gardens. This antenna easily out performs my 30m band Delta Loop design whilst giving better global coverage.

On the 20m band this antenna performs very well indeed. Considering it’s 3/5th of a wavelength long which is a strange length to have, it’s no slouch. Global coverage is excellent and working into Australia is relatively easy. I’ve yet to work into New Zealand on the 20m band using this antenna but, that’s mainly due to me not being on air at the right times. Best distance worked so far on this band is 10,656 miles.

On the 17m band the antenna is 3/4 wavelength long. This is a very useful length and easy to tune as it presents pretty much 50 ohm impedance at the feed point. Performance is simply stunning on 17m, if you can hear the DX you can work them. I am amazed at how well this antenna works on this band. It seems to have a low angle of max radiation making it excellent for chasing DX stations. Giving me my first contacts into Alaska and New Zealand this is my goto antenna for the 17m band.

On the 15m band this antenna is 7/8th of a wavelength long. Performance doesn’t feel as good as it does on 17m but, with the longest distance achieved being 8023 miles there’s really no reason to doubt it. With only 87 contacts being made on this band due to the fact that I always get trapped chasing DX on the 17m band and never make it any further up the bands, I’m sure this antenna will perform extremely well long term on 21Mhz. I just need to make more effort to get on this band.

The 12m band is one of the bands I didn’t expect this antenna to perform well on.
Being 1 and 1/8th wavelengths long it’s not a length that you would normally consider using for an antenna however, performance is excellent. This is most likely due to the point of max current being a fair way up the wire resulting in a low angle of maximum radiation. DXing is great fun with this antenna on the 12m band and it’s surprised me time and time again at how easily I’ve been able to work DX stations. With the best distance worked so far being into the Falkland Islands at 7973 miles, this antenna has huge potential on this band. Like the 15m band, I need to make an effort to spend more time on the 12m band and see how far I can push this antenna.

Finally we reach the dizzy heights of 28Mhz on the 10m band where the antenna is 1 and 1/4 wavelengths long. Again this is a useful length as it presents almost 50 ohm impedance at the feed point. DX performance on the 10m band is good. It’s probably very good however, like the 15m and 12m bands, I rarely make it up onto the 10m band and so I’ve not really given the antenna the time to prove itself at 28Mhz. My best distance worked so far on this band is 4872 Miles into the USA but, I’m sure I could easily do better if I committed more time to it.

I’ve pretty much covered all the good points of this simple multi band antenna so, now let’s look at the not so good points.

If you’re in the UK and are looking to work other UK stations then this antenna isn’t for you. Like all vertical antennas there isn’t much in the way of NVIS radiation and so you’ll find UK stations just won’t hear you. You’ll also often find you won’t hear UK stations at all due to the null at the top of the antenna that attenuates signals arriving from high/very high angles. For me this is fine as I wanted an antenna that was focused on DXing as much as possible.

From 10Mhz upwards the antenna also isn’t that good for working stations in nearby Europe. Most of the time you will only hear European stations that are more than 1000 – 1500 miles away, anything closer just doesn’t appear in the receiver. On the 15m and 12m bands often you will never hear European stations at all, only DX stations. This does of course reduce the QRM from UK/EU stations considerably making it easier to work those weak/QRP DX stations.

So as you can see, 13m (43FT) of vertical wire is probably one of the best lengths you can possibly use for a multi band vertical HF antenna especially if like me, you have a small garden to squeeze your antennas into. I don’t like to say it but, this could be the magical length we’re all looking for when making a multi band HF vertical antenna.

Tuning of the 13m (43FT) vertical antenna is achieved using my CG3000 remote auto ATU. I initially started off using my home-brew Pi-Network ATU but, changed over to the CG3000 so that in the winter months I don’t have to run out into the rain and wind to change bands. It’s important to note that the ATU must be at the base of the wire and not in the radio shack. It’s also important to note that I have 4 x 20m long radials connected to the CG3000 along with an earth spike at the base of the wire. This combination of ground and tuner works incredibly well with the ATU tuning on each band with ease in less than 3 seconds. I’ve also not had any issues with the CG3000 attempting to retune whilst in the middle of a QSO, once it’s initially tuned it doesn’t retune again until I either change band or make a large change in frequency.

The achieved SWR on all bands is <1.5:1 except for 160m where it is 1.8:1.

More soon …

Making my 160m Inverted-L into a Multi band Antenna

By: M0AWS
27 September 2023 at 16:32

I recently put up a 38m Inverted-L antenna (10m vertical/28m horizontal) and tuned it on the 160m band using a home-brew Pi-Network ATU. It’s working great on top band and I’m really pleased with performance so far.

I decided today that it would be good to try the inverted-L out on some of the other low bands too. Since my other HF antenna is a large vertical that’s great for DXing but, terrible for Inter-G I thought perhaps the Inverted-L would fill the inter-G gap.

M0AWS Pi-Network ATU using my JNCRadio VNA to find the ATU setting for each band
M0AWS Pi-Network ATU using my JNCRadio VNA to find the ATU setting for each band

Having recently purchased a JNCRadio VNA from Martin Lynch and Sons it made tuning the ATU for each band really easy. When it comes to antenna resonance I like my antennas to have an SWR of less than 1.2:1. With the VNA connected it is really easy to tune the antenna for a 1:1 SWR on a particular frequency, make a note of the tune information and then move to the next frequency and start again.

M0AWS Pi-Network ATU Inductor with turns count
M0AWS Pi-Network ATU Inductor with turns count
M0AWS Pi-Network ATU Capacitor 1 and 2 settings
M0AWS Pi-Network ATU Capacitor 1 and 2 settings

I marked up each turn on the large copper inductor so I could record the position of the input wire onto the inductor. I then added some markings on the two capacitors of the Pi-Network ATU for the resonance points on each band/frequency I wanted to resonate the antenna on.

M0AWS Pi-Network ATU settings noted for each band
M0AWS Pi-Network ATU settings noted for each band

After about 40mins I had all the settings recorded on a pad ready for testing from the shack end of the coax run. Connecting my Yaesu FTDX10 to the coax I ran through each band setting checking the SWR as I went. All bands tuned up perfectly 160m through 30m and receiving of Inter-G on the bands that were active was excellent.

Wanting to test the antenna on 40m for the first time I found Nick, M7NHC calling CQ and gave him a call using just 5w output. He came straight back to me and we had a quick chat.

Nick was using an Icom IC-7300 using just 10w into an end-fed long wire from Eastbourne down on the south coast so, we were both QRP. Nick was a 5/7 with QSB and he gave me a 5/8 with QSB, not bad at all consider how much power we were using.

I’m hoping to have a chat with some of the guys from the Matrix this evening on 60m SSB so, it will be interesting to see how the antenna performs on 5Mhz.

More soon …

20m Band Delta Loop Antenna

By: M0AWS
26 September 2023 at 11:13

I’ve had this antenna model for ages now but, never got round to putting it onto the website until Alex, GM5ALX was talking about making one the other day whilst chatting on the QO-100 satellite.

The 20m band delta loop follows exactly the same design principles as all the other delta loop designs I’ve already put on the website. They are designed such that they present a 50 ohm impedance at the feed point and thus have no requirement for complex impedance matching circuits/transformers.

M0AWS 20m Band Delta Loop Antenna - Antenna View
M0AWS 20m Band Delta Loop Antenna – Antenna View

The dimensions for the antenna are as follows:

Wire 1 – Horizontal exactly 1m above the ground for its entire 10.2m length.
Wires 2 & 3 are exactly 6.18m long each with the top being 4.5m above the ground.

M0AWS 20m Band Delta Loop Antenna - 3D Far Field Plot
M0AWS 20m Band Delta Loop Antenna – 3D Far Field Plot

The 3D far field plot shows a typical delta loop radiation pattern with the maximum radiation through the loop and a deep null in the centre.

M0AWS 20m Band Delta Loop Antenna - 2D Far Field Plot
M0AWS 20m Band Delta Loop Antenna – 2D Far Field Plot

The 2D elevation plot shows that the antenna will give a maximum gain of -0.79dBi at 30 degrees when used over average/poor soil types. If like me you use your Delta Loop antennas on the beach then the antenna will present considerably more gain as it will benefit from the salt water reflection.

If you want to lower the angle of maximum radiation and increase the gain over average ground just raise the antenna up so that the top is around 7m above ground. This will give a much lower angle of radiation and improve the gain figure by 2-3dBi. Don’t forget that if you raise the antenna the point of resonance will also rise in frequency and so you may need to shorten the wires a little to get the point of resonance back to where you want it.

The SWR plot shows that the antenna will have a fairly wide bandwidth and match to 50 ohm coax extremely well. The antenna is designed to be fed in one of the lower corners via a 1:1 balun for best results.

M0AWS 20m Band Delta Loop Antenna - SWR Curve
M0AWS 20m Band Delta Loop Antenna – SWR Curve

Summary:

Total Wire Length: 16.38m
Horizontal Wire Length: 10.2m @ 1m above ground
Diagonal Wire Lengths: 6.18m
Wire Dia: 2.5mm
Height at Centre: 4.5m
Feed Type: 1:1 Balun in bottom corner (Can use coax if necessary)
Impedance: 50 Ohm
SWR: <1.5:1 at resonance

Getting back onto 160m “Top Band”

By: M0AWS
6 September 2023 at 08:11

Since setting up the new HAM station here in the UK the one band I’ve not yet got back onto is 160m, one of my most favourite bands in the HF spectrum and one that I was addicted to when I live in France (F5VKM).

Having such a small garden here in the UK there is no way I can get any type of guyed vertical for 160m erected and so I needed to come up with some sort of compromise antenna for the band.

Only being interested in the FT4/8 and CW sections of the 160m band I calculated that I could get an inverted-L antenna up that would be reasonably close to resonant. It would require some additional inductance to get the electrical length required and some impedance matching to provide a 50 Ohm impedance to the transceiver.

Measuring the garden I found I could get a 28m horizontal section in place and a 10m vertical section using one of my 10m spiderpoles. This would give me a total of 38m of wire that would get me fairly close to the quarter wave length.

For impedance matching I decided to make a Pi-Network ATU. I’ve made these in the past and found them to be excellent at matching a very wide range of impedances to 50 Ohm.

M0AWS Homebrew Pi-Network ATU
M0AWS Homebrew Pi-Network ATU

Since I still had the components of the Pi-Network ATU that I built when I lived in France I decided to reuse them as it saved a lot of work. The inductor was made from some copper tubing I had left over after doing all the plumbing in the house in France and so it got repurposed and formed into a very large inductor. The 2 x capacitors I also built many years ago and fortunately I’d kept locked away as they are very expensive to purchase today and a lot of work to make.

Getting the Inverted-L antenna up was easy enough and I soon had it connected to the Pi-Network ATU. I ran a few radials out around the garden to give it something to tune against and wound a 1:1 choke balun at the end of the coax run to stop any common mode currents that may have appeared on the coax braid.

Connecting my JNCRadio VNA I found that the Inverted-L was naturally resonant at 2.53Mhz, not too far off the 1.84Mhz that I needed. Adding a little extra inductance and capacitance via the ATU I soon had the antenna resonant where I wanted it at the bottom of the 160m band.

M0AWS 160m Inverted L Antenna SWR Curve
M0AWS 160m Inverted L Antenna SWR Curve

With the SWR being <1.5:1 across the CW and FT8 section of the band I was ready to get on 160m for the first time in a long.

Since it’s still summer in the UK I wasn’t expecting to find the band in very good shape but, was pleasantly surprised. Switching the radio on before full sunset I was hearing stations all around Europe with ease. In no time at all I was working stations and getting good reports using just 22w of FT8. FT8 is such a good mode for testing new antennas.

As the sky got darker the distance achieved got greater and over time I was able to work into Russia with the longest distance recorded being 2445 Miles, R9LE in Tyumen Asiatic Russia.

In no time at all I’d worked 32 stations taking my total 160m QSOs from 16 to 48. I can’t wait for the long, dark winter nights to see how well this antenna really performs.

M0AWS Map showing stations worked on 160m using Inverted L Antenna
M0AWS Map showing stations worked on 160m using Inverted L Antenna

The map above shows the locations of the stations worked on the first evening using the 160m Inverted-L antenna. As the year moves on and we slowly progress into winter it will be fun to start chasing the DX again on the 160m band..

UPDATE 6th October 2023.
Been using the antenna for some time now with over 100 contacts on 160m. Best 160m DX so far is RV0AR in Sosnovoborsk Asiatic Russia, 3453 Miles using just 22w. Pretty impressive for such a low antenna on Top Band.

More soon …

❌
❌