❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Modelling my Inverted-L Antenna

By: M0AWS
7 October 2023 at 13:22

Since I put together my Inverted-L antenna and Pi-Network ATU I’ve been having a lot of fun on the low bands.

Getting back onto 160m has been most enjoyable and I’ve now had over 100 β€˜Top Band’ contacts with distances covered as far as 3453 Miles into Sosnovoborsk Asiatic Russia.

I must admit I am amazed at the distances achieved on the 160m band as the antenna isn’t very high above ground level when compared to a single wave length on 160m.

M0AWS Inverted-L Antenna View
M0AWS Inverted-L Antenna View

The Inverted-L antenna at the M0AWS QTH was designed purely around the size of the back garden. Using a couple of 10m Spiderpoles the vertical section of the antenna is 10m tall and the horizontal section is 28m long. Naturally the antenna resonates around 2.53Mhz but, can be tuned to resonate anywhere on any band using the Pi-Network ATU I built that is situated at the base of the vertical section of the antenna.

Looking at the far field plots for the antenna on each band we see that as we move higher in frequency the radiation pattern becomes more complex and the radiation angle gets lower, exactly what we would expect from such an antenna. The antenna runs pretty much North/South in the garden ( X axis on the diagram above) and so we would expect the antenna to radiate East/West (Y axis on the diagram above) however, this isn’t always the case.

M0AWS Inverted-L Antenna 160m 3D Far Field Plot
M0AWS Inverted-L Antenna 160m 3D Far Field Plot
M0AWS Inverted-L Antenna 160m 2D Far Field Plot
M0AWS Inverted-L Antenna 160m 2D Far Field Plot

(Click Far Field Plots for full screen view)

On 160m the antenna favours the South (-X Axis) and presents some usable high angle gain although, from using the antenna you would never know this to be the case as it seems to have pretty good all round coverage. With the best distance of 3453 Miles being covered to the East into Asiatic Russia the antenna performs well even though the far field plot is slightly biased to the South.

M0AWS Inverted-L Antenna 80m 3D Far Field Plot
M0AWS Inverted-L Antenna 80m 3D Far Field Plot
M0AWS Inverted-L Antenna 80m 2D Far Field Plot
M0AWS Inverted-L Antenna 80m 2D Far Field Plot

On the 80m band the Inverted-L antenna becomes a cloud warmer and exhibits very high angle radiation. On 80m the antenna is ideal for NVIS Inter-G propagation and is great for rag chewing with other UK/Near EU stations.

M0AWS Inverted-L Antenna 60m 3D Far Field Plot
M0AWS Inverted-L Antenna 60m 3D Far Field Plot
M0AWS Inverted-L Antenna 60m 2D Far Field Plot
M0AWS Inverted-L Antenna 60m 2D Far Field Plot

Looking at the far field plots for the 60m band once again the antenna provides lots of high angle gain however, there is also some very useable lower angle gain that has proven to be excellent for working long hauls into North America and east into Central Asia. On the 60m band during the day the antenna is excellent for Inter-G chatting, using just 20w-40w I can very easily chat with other UK HAMs even when the band is noisy.

M0AWS Inverted-L Antenna 40m 3D Far Field Plot
M0AWS Inverted-L Antenna 40m 3D Far Field Plot
M0AWS Inverted-L Antenna 40m 2D Far Field Plot
M0AWS Inverted-L Antenna 40m 2D Far Field Plot

Moving on up to the 40m band we find the far field plot starts to get a little more complex. Looking at the 3D plot you’d think that the antenna favoured the South (-X Axis) however, in reality it favours the NorthWest with both some high and low angle gain. This antenna has proven to be excellent for DXing into North America on 40m but, has also been great for DXing into South America getting great signal reports from stations in Panama at a distance of 5415 Miles. During the day NVIS propagation is excellent and I find I can chat with other UK and near EU stations with ease using just 25w.

M0AWS Inverted-L Antenna 60m/40m Global Coverage
M0AWS Inverted-L Antenna 60m/40m Global Coverage

Above is a screen shot from PSKReporter showing stations that have heard me on the 40m and 60m bands. As you can see, global coverage is excellent with stations as far as Australia and New Zealand hearing me on the 40m band and stations on the West Coast USA hearing me on the 60m band. I was also pleased to see I was heard in Africa on both bands, a region of the world I would like to get more contacts from.

M0AWS Inverted-L Antenna 30m 3D Far Field Plot
M0AWS Inverted-L Antenna 30m 3D Far Field Plot
M0AWS Inverted-L Antenna 30m 2D Far Field Plot
M0AWS Inverted-L Antenna 30m 2D Far Field Plot

On the 30m band the Inverted-L antenna starts to exhibit two lobes with gain to the NorthEast and NorthWest. This makes the antenna ideal for working into the USA and Australia/New Zealand over the North Pole. Working US stations is a breeze with relatively low power and I almost got a contact with New Zealand during the evening greyline but, unfortunately the DX station dropped out before I managed to get my signal report back to him. As time goes on I’m sure the antenna will more than prove itself on the 30m band.

So far I’ve not ventured above the 30m band with the Inverted-L antenna as I’ve really been enjoying access to Inter-G chats on 80m, 40m and 60m and chasing DX on 160m, 60m, 40m and 30m. I need to venture up onto the higher bands before the long winter nights settle in and the higher HF bands close for the winter season.

Looking at the far field plots on the higher HF bands the antenna has huge potential as it provides some nice low angle radiation in useful directions.

M0AWS Inverted-L Antenna 20m 3D Far Field Plot
M0AWS Inverted-L Antenna 20m 3D Far Field Plot
M0AWS Inverted-L Antenna 20m 2D Far Field Plot
M0AWS Inverted-L Antenna 20m 2D Far Field Plot

On the 20m band the far field plot starts to get much more complex with lobes at many different angles. The main gain lobe is to the NorthEast towards the USA and is at a fairly low angle and so this antenna should be great for working stateside on the 20m band. There are also lobes to the NorthEast and so hopefully working VK/ZL over the pole should also be possible. As I said above I’ve not yet used the antenna above the 30m band and so at this time cannot confirm performance but, it looks promising.

M0AWS Inverted-L Antenna 17m 3D Far Field Plot
M0AWS Inverted-L Antenna 17m 3D Far Field Plot
M0AWS Inverted-L Antenna 17m 2D Far Field Plot
M0AWS Inverted-L Antenna 17m 2D Far Field Plot

The 17m band also looks promising with a similar far field plot as the 20m band but, with lower angle of maximum radiation and more gain. It will be very interesting to test this antenna on 17m especially since the noise level is below S0 and I can very easily hear the weakest of stations on this band.

M0AWS Inverted-L Antenna 15m 3D Far Field Plot
M0AWS Inverted-L Antenna 15m 3D Far Field Plot
M0AWS Inverted-L Antenna 15m 2D Far Field Plot
M0AWS Inverted-L Antenna 15m 2D Far Field Plot

Once again the 15m band looks very similar to the 17m band, low angle radiation but, with a slightly more complex far field plot.

M0AWS Inverted-L Antenna 12m 3D Far Field Plot
M0AWS Inverted-L Antenna 12m 3D Far Field Plot
M0AWS Inverted-L Antenna 12m 2D Far Field Plot
M0AWS Inverted-L Antenna 12m 2D Far Field Plot

The 12m band far field plots continue the theme with the angle of maximum radiation slightly lower than on the 15m band and slightly more gain. This antenna should be great for chasing the DX on the very quiet 12m band.

M0AWS Inverted-L Antenna 10m 3D Far Field Plot
M0AWS Inverted-L Antenna 10m 3D Far Field Plot
M0AWS Inverted-L Antenna 10m 2D Far Field Plot
M0AWS Inverted-L Antenna 10m 2D Far Field Plot

Finally the 10m band is very similar to the 12m band in that the far field plots show low angle gain albeit with an even more complex radiation pattern.

I originally put this antenna up so that I could work Inter-G on the low bands but, it has proven to be a much more worthy antenna than I originally thought it would be. I need to spend more time with this antenna on the bands above 30m to really see how it performs on the higher HF bands but, so far I’m really pleased with it’s overall performance on all the bands tested to date.

I can highly recommend using FT8 to test new antennas. With PSKReporter and my own NodeRed World Map WSJT-X interface I can see realtime the antenna performance on each band. FT8 is an extremely useful tool when it comes to testing antennas to see if they perform as per the modelling and can often provide some performance surprises!

More soon …

Making my 160m Inverted-L into a Multi band Antenna

By: M0AWS
27 September 2023 at 16:32

I recently put up a 38m Inverted-L antenna (10m vertical/28m horizontal) and tuned it on the 160m band using a home-brew Pi-Network ATU. It’s working great on top band and I’m really pleased with performance so far.

I decided today that it would be good to try the inverted-L out on some of the other low bands too. Since my other HF antenna is a large vertical that’s great for DXing but, terrible for Inter-G I thought perhaps the Inverted-L would fill the inter-G gap.

M0AWS Pi-Network ATU using my JNCRadio VNA to find the ATU setting for each band
M0AWS Pi-Network ATU using my JNCRadio VNA to find the ATU setting for each band

Having recently purchased a JNCRadio VNA from Martin Lynch and Sons it made tuning the ATU for each band really easy. When it comes to antenna resonance I like my antennas to have an SWR of less than 1.2:1. With the VNA connected it is really easy to tune the antenna for a 1:1 SWR on a particular frequency, make a note of the tune information and then move to the next frequency and start again.

M0AWS Pi-Network ATU Inductor with turns count
M0AWS Pi-Network ATU Inductor with turns count
M0AWS Pi-Network ATU Capacitor 1 and 2 settings
M0AWS Pi-Network ATU Capacitor 1 and 2 settings

I marked up each turn on the large copper inductor so I could record the position of the input wire onto the inductor. I then added some markings on the two capacitors of the Pi-Network ATU for the resonance points on each band/frequency I wanted to resonate the antenna on.

M0AWS Pi-Network ATU settings noted for each band
M0AWS Pi-Network ATU settings noted for each band

After about 40mins I had all the settings recorded on a pad ready for testing from the shack end of the coax run. Connecting my Yaesu FTDX10 to the coax I ran through each band setting checking the SWR as I went. All bands tuned up perfectly 160m through 30m and receiving of Inter-G on the bands that were active was excellent.

Wanting to test the antenna on 40m for the first time I found Nick, M7NHC calling CQ and gave him a call using just 5w output. He came straight back to me and we had a quick chat.

Nick was using an Icom IC-7300 using just 10w into an end-fed long wire from Eastbourne down on the south coast so, we were both QRP. Nick was a 5/7 with QSB and he gave me a 5/8 with QSB, not bad at all consider how much power we were using.

I’m hoping to have a chat with some of the guys from the Matrix this evening on 60m SSB so, it will be interesting to see how the antenna performs on 5Mhz.

More soon …

Getting back onto 160m β€œTop Band”

By: M0AWS
6 September 2023 at 08:11

Since setting up the new HAM station here in the UK the one band I’ve not yet got back onto is 160m, one of my most favourite bands in the HF spectrum and one that I was addicted to when I live in France (F5VKM).

Having such a small garden here in the UK there is no way I can get any type of guyed vertical for 160m erected and so I needed to come up with some sort of compromise antenna for the band.

Only being interested in the FT4/8 and CW sections of the 160m band I calculated that I could get an inverted-L antenna up that would be reasonably close to resonant. It would require some additional inductance to get the electrical length required and some impedance matching to provide a 50 Ohm impedance to the transceiver.

Measuring the garden I found I could get a 28m horizontal section in place and a 10m vertical section using one of my 10m spiderpoles. This would give me a total of 38m of wire that would get me fairly close to the quarter wave length.

For impedance matching I decided to make a Pi-Network ATU. I’ve made these in the past and found them to be excellent at matching a very wide range of impedances to 50 Ohm.

M0AWS Homebrew Pi-Network ATU
M0AWS Homebrew Pi-Network ATU

Since I still had the components of the Pi-Network ATU that I built when I lived in France I decided to reuse them as it saved a lot of work. The inductor was made from some copper tubing I had left over after doing all the plumbing in the house in France and so it got repurposed and formed into a very large inductor. The 2 x capacitors I also built many years ago and fortunately I’d kept locked away as they are very expensive to purchase today and a lot of work to make.

Getting the Inverted-L antenna up was easy enough and I soon had it connected to the Pi-Network ATU. I ran a few radials out around the garden to give it something to tune against and wound a 1:1 choke balun at the end of the coax run to stop any common mode currents that may have appeared on the coax braid.

Connecting my JNCRadio VNA I found that the Inverted-L was naturally resonant at 2.53Mhz, not too far off the 1.84Mhz that I needed. Adding a little extra inductance and capacitance via the ATU I soon had the antenna resonant where I wanted it at the bottom of the 160m band.

M0AWS 160m Inverted L Antenna SWR Curve
M0AWS 160m Inverted L Antenna SWR Curve

With the SWR being <1.5:1 across the CW and FT8 section of the band I was ready to get on 160m for the first time in a long.

Since it’s still summer in the UK I wasn’t expecting to find the band in very good shape but, was pleasantly surprised. Switching the radio on before full sunset I was hearing stations all around Europe with ease. In no time at all I was working stations and getting good reports using just 22w of FT8. FT8 is such a good mode for testing new antennas.

As the sky got darker the distance achieved got greater and over time I was able to work into Russia with the longest distance recorded being 2445 Miles, R9LE in Tyumen Asiatic Russia.

In no time at all I’d worked 32 stations taking my total 160m QSOs from 16 to 48. I can’t wait for the long, dark winter nights to see how well this antenna really performs.

M0AWS Map showing stations worked on 160m using Inverted L Antenna
M0AWS Map showing stations worked on 160m using Inverted L Antenna

The map above shows the locations of the stations worked on the first evening using the 160m Inverted-L antenna. As the year moves on and we slowly progress into winter it will be fun to start chasing the DX again on the 160m band..

UPDATE 6th October 2023.
Been using the antenna for some time now with over 100 contacts on 160m. Best 160m DX so far is RV0AR in Sosnovoborsk Asiatic Russia, 3453 Miles using just 22w. Pretty impressive for such a low antenna on Top Band.

More soon …

❌
❌