❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Analysis of interference from a SolarEdge PV (solar) electric system.

By: KA7OEI
1 May 2024 at 04:04

Comment:

This article - while it centers about the investigation of a SolarEdge PV (PhotoVoltaic) system - the discussions of techniques and strategies should be generally useful when investigating interference from any make or model of PV system - or even interference from other sources.

* * *

Several months ago I got a call from a local amateur who was very concerned about a sudden rise in his noise floor across the HF spectrum (3-30 MHz).Β  This increase in noise seemed to be coincident with the installation and commission of a 5 kW PV (Photovoltaic, or "Solar") electrical system on the house of an adjacent neighbor.Β  I suggested that he talk to the manufacturer of the PV system to discuss the situation - and to request from them possible solutions.

A few weeks ago, he got back to me and he had, in fact, talked to the manufacturer and an online meeting was arranged in which they would remotely idle the neighbor's system while we were monitoring via the amateur's receive antenna.

Out of curiosity - and as sort of a practice run - I went over the weekend before the online meeting to get a better idea as to the spectral signature of this system - a SolarEdge series string system with optimizers - when it was operating normally.Β  The amateur had obtained permission from the neighbor to allow us to enter their yard to make very "close in" measurements (e.g. within a few inches/cm of the equipment, conductors) to obtain spectral "samples" of the system, thereby excluding external signals.

For these measurements, I used an amplified, shielded magnetic ("H") loop antenna (about 18"/50cm) in diameter as the "sense" antenna and an HP/Agilent/Keysight spectrum analyzer, recording the plots electronically - although a Tiny SA "Ultra" would likely have sufficed as well.Β  None of the readings were to represent "absolute" signal levels as all that we were really interested in were relative measurements, and as such all that we needed to do was keep our measurements consistent - that is, being able to precisely repeat the conditions between subsequent measurements.Β  These readings would allow us to understand the nature of the RF energy that it was creating - its "signature", if you will.

Note:Β  For information about the H-field loop used for this testing - and using an inexpensive spectrum analyzer such as the "Tiny SA" or, better yet, the "Tiny SA Ultra", see a previous blog entry "RFI Sleuthing with the Tiny SA" - Link.

The nature of this QRM:

The interference observed by this amateur - now known for certain to be signature of this model of SolarEdge PV system - was evident as two general types of signals:

  • Moderate to strong clusters of carriers every "even" 200 kHz.Β  At 200 kHz intervals (e.g. 7.0, 7.2, 7.4 and 14.0, 14.2 and 14.4 MHz) from below 3 MHz through at least 30 MHz could be heard a melange of closely-spaced carriers within about 500 Hz of each other on the lower bands.Β  While these carriers sounded like mostly CW (unmodulated) signals, there was also evidence of low rate data signalling buried in the cacophony as well as additional lower-level carriers.
  • Background "white" noise amplitude-modulated at the mains frequency.Β  If you were just casually listening at this amateur's QTH on the HF bands - say 40 meters - you might be forgiven in the short term for presuming that nothing was wrong.Β  In reality the noise floor had been elevated several "S" units by the PV system - the result sounding superficially like plain, old white noise:Β  Switching from SSB to AM reveals the loud "hum" that is riding on the noise - modulation that is almost "invisible" if one is listening only using SSB.

While the appearance of the above interference coincided with the activation of the neighbor's system, that fact that it disappeared at night further pointed to a PV system as the source of the QRM.

"Close-in" measurements

Placing the sense antenna right at the main inverter on the back of the neighbor's house, we wanted to take a snapshot of the spectrum at that location:

Figure 1:Β  0-30 MHz sampled right at the main inverter

With each horizontal division representing 3 MHz, this 0-30 MHz plot shows a high concentration of noise in the 3-9 MHz area from a location right at the inverter.

Because Figure 1 represents the spectrum at the inverter, we wondered what it would look like at one of the solar panels so we placed the sense antenna right against one of the solar panels:

Figure 2:Β  0-30 MHz sweep with sense antenna placed next to a solar panel

Figure 2 is in the same frequency and amplitude scale as Figure 1 - but with the "reference level" adjusted by 20 dB to move the trace "up" a bit - and we can see that the spectrum next to the panel looks quite different from that sampled right at the inverter.Β  This isn't unexpected as Figure 2 would likely represent more of the noise that is emitted from the DC (input) side of the optimizer whereas the spectrum represented in Figure 1 would be more likely to show that of the DC output of the optimizer plus whatever noise was riding on the conductors carrying the DC input and AC output of the main string inverter.

Although it is difficult to be sure, the 0-30 MHz plots taken from a greater distance (10 meters or more) had the general appearance of the noise spectra shown in Figure 2 more than that of Figure 1 leading me to believe that a significant portion of the QRM may be being radiated from the panels themselves rather than just the conductors going from the optimizersΒ  to the main inverter - but certainly, both are likely involved.

Note:Β  For both of these plots, the RF energy from the PV system was many 10s of dB above the typical background noise floor - in this case, 40-50dB for Figure 1 and at least 30dB for Figure 2 in the area around 7 MHz.

As the 0-30 MHz sweep does not have enough resolution to visualize the narrower 200 kHz signals, the analyzer was readjusted as depicted in Figure 3 - again with the sense antenna next to the panel:

Figure 3:Β  From near the panel, a "zoomed in" spectral sweep showing narrowband birdies.

In this spectrum plot we can see not only the "white" noise on the floor of the sweep representing the "hummy hiss", but also the much stronger signals every 200 kHz - plus a number of weaker signals in between:Β  It is these signals that are the most obvious to the casual operator and appear to be unique to a SolarEdge system of this model/type.

On this same day we waited until after sunset - monitoring the groups of carriers at 7.2 MHz and hearing them "flicker" out of existence as it got dark and we re-did the "next to the panel" measurements - this time the spectrum was devoid of the 200 kHz-spaced carriers (they were no longer audible on the amateur receiver, either) and the 0-30 MHz plots were 10s of dB lower than in the daylight.Β 

Important:Β  The 2 MHz sweeps in Figures 3-7 use a resolution bandwidth of 10 kHz which is almost exactly 4 times wider than the typical SSB bandwidth of an amateur receiver of about 2.5 kHz making their apparent level above the background noise appear lower than it is actually is.

What this means is the coherent signals - such as the 200 kHz carriers - appear to be another 6 dB farther above the noise floor in an SSB bandwidth than what the analyzer plots show.

Plots from a distance

Having captured some "close-in" plots, we now had an idea as to what the signals emitted by the PV system looked like.

A few days after we made the above plots we were in a virtual meeting with the manufacturer of the PV system (SolarEdge) from the ham's shack.Β  Having reconfigured the feed to his main radio, we could quickly switch the feedline from the antenna feeding the radio and the spectrum analyzer.

At this time we also learned that there was a second SolarEdge system south of this amateur's QTH - about 150 feet (45 meters) away across the cul de sac - and that the neighboring system and the one across the street would but remotely shut down, in that order, to determine how much QRM was emanating from each.

While we captured 0-30 MHz plots of each stage of system shutdown, for the purposes of this article we'll show just the "narrow" plots in 2 MHz sweeps as depicted in Figure 3 as the presence of the 200 kHz signal are generally representative of the presence of the broadband noise as well and these signals were easily identifiable and now known to be indicators of QRM from this type of PV system.

First, here's the plot from the amateur's 40 meter inverted Vee antenna with both systems on:

Figure 4:Β  6-8 MHz plot from the 40 meter antenna showing the 200 kHz peaks - and a bit of broadband noise as well.
Β 
The next plot shows the effects when the neighboring system was turned off, but the one across the street still on:

Figure 5:Β  The neighboring system off - but the one across the street still on.

As can be seen, the broadband noise floor around the 40 meter band (approximately one horizontal division below and above the marker) has dropped visibly - around 3-4 dB - and the amplitude of the carrier at 7.2 MHz has dropped about 6 dB - and the 200 kHz signals have disappeared almost entirely below about 6.5 MHz.Β  The system across the street was then shut off and the only remaining signals were those that happened to be on the 40 meter band.Β  (No trace is available for this configuration, unfortunately.)

As the 40 meter inverted Vee is oriented to favor east-west signals it was not necessarily the best candidate to test the effects of the PV system across the street, so we switched to a 20 meter antenna which was responsive in that direction and this trace shows the plot between 13 and 15 MHz:

Figure 6:Β  This plot of the 20 meter band and surrounding frequencies shows only propagated signals, with no sign of PV system QRM.

As both systems were off, the trace was quite clear - only showing signals that actually were on or near the 20 meter band, propagated from elsewhere in the world.Β  The folks at SolarEdge then turned on the system across the street with the following result:

Figure 7:Β  Same as Figure 6, but with only the PV system across the street activated.

The effect is clear:Β  In the vicinity of the 20 meter band, the appearance of rather strong signals every 200 kHz is apparent - and there is an obvious 2-4 dB increase in the noise floor indicating that this system, too, is causing harmful interference.

Readings on the radio:

It would seem that the folks at SolarEdge had worked with more than one amateur radio operator on similar issues and I was pleasantly surprised when they asked for some "S-Meter" reading comparisons with the neighbor's system on and off.Β  Using a calibrated signal generator, I'd already determined the signal level (in dBm) that correlated with the S-meter readings for the Icom radio - and here are the results for 40 meters:

Both systems off:

S1 (<= -84 dBm) - no carrier groups every 200 kHz.

Neighbor system on:

S4 (-78 dBm) - white noise between 200 kHz carriers.

S9 (-67 dBm) - carriers at 7.2 MHz.

This shows that at 40 meters, the degradation to noise alone was on the order of 6 dB (most Japanese radios are calibrated for 3dB per S-unit) and that the cluster of carriers on 200 kHz intervals was far more destructive, rising a bit short of 20dB out of the noise floor.

As our time with the SolarEdge folks in the virtual meeting was limited, we were not able to do similar "S-meter" tests on 20 meters, but we can use the 40 meter results along with the relative strength of the 200 kHz-spacing carriersΒ  and correlate them with the 40 and 20 meter spectrum analyzer traces and determine that the severity of QRM from the PV system on 20 meters on the receiver would have been roughly comparable to that on 40.

Analysis of these readings and implications:

As mentioned earlier, there are two types of interfering signals produced by these SolarEdge PV systems:

  • Moderate to strong clusters of carriers every "even" 200 kHz.Β  These are very obvious, easy to identify, and quite strong compared to the noise with a few weaker signals in-between that were also clearly audible.
  • Background "white" noise amplitude-modulated at the mains frequency.Β  This is also present, but it borders on insidious as the average amateur may not be able to quantify its existence - let alone its effects - as its effects may be obscured if one only listens for it using SSB modes.

Will my radio's DSP help?

The quick answer is "No".

While you might think that modern receivers' ability to "notch out" tones might help alleviate the effects of the signals every 200 kHz, you would be wrong.

It appears that each, individual optimizer module (there is one for every solar panel) produces these signals - and being based on individual oscillators, their frequencies will be slightly different from each other meaning that instead of needing to notch just one tone, your DSP would have to notch out dozens emanating from a single PV system - and it just cannot do that!Β  What's worse, these carriers are also modulated by the low-rate data used to communicate to/from each, individual module which broadens their spectrum as well.

As for the "white" noise, it is unlikely that noise reduction would help much, either:Β  The source of this appears to be an artifact of the actual voltage converters themselves and as it is random, it is as difficult to reduce in its effects as the normal background noise of the bands.

As each optimizer module contains is own switch-mode power converter to maximize panel efficiency, they, too - like any switch-mode supply - will produce harmonic energy.Β  It would appear that SolarEdge uses switch-mode controllers that employ "spread spectrum" clocking so that instead of having a myriad of harmonics and birdies all throughout the RF spectrum, that energy is "smeared" all over the place making it somewhat less obtrusive.

The use of spread-spectrum clocking is very widely used these days for the reasons noted above - and for the fact that it also enables the exploitation of a quirk when a device is subjected to testing for regulatory (FCC) compliance:Β  Aspects of that testing specify the maximum amount of signal energy that may be present in a given bandwidth - but by "spreading" it over a much wider bandwidth, that same amount of energy would be diluted and make the readings obtained during the testing appear lower.Β  This is perfectly legal and commonly done - but this technique does nothing to reduce the total amount of energy radiated - only filtering can do that!

It is apparent that in this particular case, both the neighboring system and the one across the street contribute a magnitude of interference that would be considered to be "harmful" in that it is perfectly capable of submerging weak-to-moderate signals into locally-generated noise - and if such signals happened to land near a 200 kHz harmonic rather than the elevated noise floor in between the effects are >10dB more destructive.

It is also apparent that the radiated noise extends - at the very least - from the 40 meter to 20 meter bands (7-14 MHz) but the 30 MHz plots imply a significant amount of RF energy above and below this:Β  The limited time permitted a semi-detailed analysis of only the interference around the 40 and 20 meter bands.

After the meeting:

At the conclusion of these tests, the analyzer readings that took were forwarded to the folks at SolarEdge for their analysis - and it is still too soon to know of any conclusions that would indicate what sort of actions that they might take.Β  We were, however, heartened to know that they seemed to understand and were sympathetic to the plights of amateurs affected by neighboring systems that might be adversely affect amateur radio operation.

The folks at SolarEdge themselves offered the best hope of resolution:Β  They noted that they have a special version of PV hardware (e.g. optimizers) that has additional filtering that could be retrofitted into an existing system to reduce the potential for interference.Β  As this retrofit would be done on their "dime" - and it would be rather expensive - they understandably want to be sure that they have identified only systems that are of their manufacture that are causing interference.

Is a system near you?Β  You can listen for yourself!

Somewhat ominously, I have since tuned to 14.2 and 14.4 MHz on my mobile HF station while driving around residential and interstate roads in my local area (Salt Lake City, Utah) during my normal commute/business:Β  I can, in many places, hear the characteristic "roar" of narrow carriers every 200 kHz - likely from SolarEdge PV - systems as these carriers seem to disappear during the hours of darkness.

I have heard this characteristic signal even in locations that appear to be several city blocks from any structure that might be equipped with a PV system.Β  They may also be heard on other bands - including 40 meters - but the signals emitted on the higher bands (e.g. 20 meters) seem to be emitted with greater efficiency.

It would seem that these 200 kHz-spaced groups of carriers really get out!

"I have interference from a PV system - what should I do?"

At this point I will not reiterate in detail remediation methods that might be undertaken by a radio amateur affected by this type of PV system:Β  The June, 2016 QST article (link) discusses attempted mitigation using ferrite devices in detail. (Note:Β  This article also refers to experiences with a SolarEdge system - but the spectra of the system described there is different from what I found on the systems described here likely due to it being a now-older system.)

Β I will only mention in passing that there's the possibility that a degree of mitigation may be possible with the use of "noise cancelling" antennas of the sort offered by Timewave, MFJ and others - but their utility is also somewhat limited owing to practical concerns: Β  Such techniques work best on distant "point sources" of interference rather than very nearby, spread-out (in terms of subtended agle) radiators in the near field.

If you have interference from a PV system, it is up to YOU to do your due diligence to determine that it is, in fact, a PV system that is causing the issues and NOT other devices in your house or those of your neighbors that is causing the problem.Β  If you own a PV system - or have one installed on your house - that you suspect is causing a problem, making detailed measurements with it on and off on various frequencies would be a suggested first step.

As this article relates only to the SolarEdge PV system that I investigated, I cannot possibly offer advice to another brand of system that uses other brands of equipment in regards to interference potential - but if you suspect that you or your neighbor(s) have this brand of PV system that is causing interference, I would suggest the following checks during daylight and hours of darkness as appropriate:

  • Are there signals every 200 kHz?Β  Common frequencies where this would be observed include 3.6, 3.8, 4.0, 7.0, 7.2, 14.0, and 14.2 MHz.Β  This is definitely one of the hallmarks of a SolarEdge system of the same/similar model - but it similar artifacts may be produced by others.
  • Does the "hiss" that is elevating your noise floor have an obvious "hum" to it when you switch to AM?Β  You can't easily hear this when you are in SSB mode.Β  Listen for this on frequencies in the vicinity of 60, 40, 30 and 20 meters on a frequency devoid of other signals.
  • Does the "hummy hiss" greatly reduce when it gets very cloudy?Β  The "hummy hiss" - which appears to be a property of the voltage converters - seems to become more intense with increased output from the PV system.
  • Do the 200 kHz signals and the "hummy hiss" go away after sunset and return only after sunrise?Β  Not unexpectedly, this is hallmark of many PV systems' noise generation.
    • Be aware that some models/brands (although not the one discussed in this article) can produce RF interference if either solar illumination OR mains voltage is present and that it takes the removal of BOTH to silence them (e.g. turning of the mains breaker feeding the system at night.)

If you believe that you are being affected by a PV system, it is up to YOU to be prepared to take all appropriate measures to document the interference, do your own testing, and make repeated observations prior to reporting them to the manufacturer, a regulatory agency, club or national organization.Β  A few things to consider:

  • Treat this as if you were causing interference to someone else.Β  Just as if a neighbor complained that you were causing problems to their equipment, it is incumbent on YOU to determine if the problem is on your end.Β  There are likely many, many devices in your house that can cause similar types of interference so be sure that you have ruled those out - and DO NOT forget that you may have devices running on UPSs or battery back-up that may still make noise even if you shut off your power.Β  (Many UPSs are known to be noisy in their own right!)Β  In other words, be certain that your house is clean before involving them as this will not only make determining the magnitude/nature of interference from a PV system easier, but it shows good will and competence on your part.
  • Document the issue over the period of days, weeks or even months.Β  Many sources of interference come and go - but if it's a PV system, it will be there day in and day out.Β  Noting over time the consistency of the noise may give you a clue if it's some other type of device - and if it, in fact, related to a PV system: GOOD documentation will only help your case.
  • Once you have ruled out everything else, go ahead and contact the manufacturer - but be nice!Β  If you are confident that your own house is in order (e.g. you have ruled out other devices) then contact the manufacturer.
    • If you have been following the above steps, you will already have some documentation which makes your specific case more solid.
    • The manufacturer may schedule an online meeting to discuss the issue and run tests.Β  Be sure that you have the ability to use Zoom or Google Groups - or find someone who does.
    • If the manufacturer runs tests, they will likely turn on/off suspected systems so YOU should be ready to document changes in noise floor - and of the signals every 200 kHz (in the case of a SolarEdge system of the type investigated here).Β  If you have already been taking notes/documenting, you should be already familiar with your local signal environment and be able to expedite the running of these tests - and have a basis of comparison as well.
    • If the manufacturer decides that they wish to help remedy your situation, remember that they may be doing it at their own expense:Β  It is incumbent on YOU to be cooperative, competent, courteous, accurate and honest when you are dealing with them and their requests.
    • If you feel the need to do so, you may wish to enlist the help of one or more friends to help you with these tasks that may be more experienced - and having a second or even third pair of eyes on the problem is always a good idea.Β  If you are not comfortable doing so, I would suggest have someone else - familiar with your problem - who can talk "nerd" be your spokesperson when dealing with the manufacturer!
    • You should be clear to the manufacturer to define "interference" differently from "harmful interference".Β  If you can just hear weak birdies that don't really cause any issues, this could be considered just plain, old "interference" and you may not get as much sympathy or action as you like.Β  "Harmful interference" is that which - when present - obliterates even moderately strong signals that would otherwise be quite usable and thus, they should be taken more seriously.

While this article is rather specific to the SolarEdge PV system as described, this is likely be applicable to other manufacturers and models in more general ways.

Good luck!

* * * * *

P.S.Β  Overall, I was pleased with the knowledge and responsiveness of the SolarEdge folks with respect to interference to amateur radio stations.Β  After they have had time to digest the information supplied and executed their plan of action I hope to do a follow-up to ascertain the results of their mitigation efforts.

Myself and several other local amateur radio friends have PV (solar) at our own QTHs and experience ZERO interference.Β  As we had chosen to take an active part in our PV system design, we had installed SunnyBoy series-string systems which are known (and proven!) to have zero interference potential on any LF, MF or HF amateur band as described in the link(s) below.Β  Unfortunately, some installers will not entertain the use of this type of system if it is not in the suite of products that they offer.

Other local amateurs that I know have microinverter-based PV systems using Enphase IQ modules and have reported minimal or no interference.Β  As I have not (yet) had the opportunity to carefully analyze the spectral signature of this product, I can only go by their assertion that their own system has not caused them obvious problems.Β  I hope to do a careful analysis of a modern Enphase system and if so, I'll report the findings on this blog.

Please post in your comments your experiences with PV systems - but please do so in the context of having fully read this article and at least perused the articles linked below.

Β  * * * * *

Other articles at this blog on related topics:


Other articles related to this topic:

Β 

Stolen from ka7oei.blogspot.com


[END]

Β 

Building a Solar Powered Ham Radio Station

21 December 2023 at 17:01
The Off-Grid Ham Shack series discusses creating a self-sufficient ham radio station or 'Ham Shack' capable of operating on solar power during any grid down scenario, emphasizing the importance of an energy strategy for off-grid communications. This system includes solar panels, a charge controller, battery, and power distribution system. Key elements are the use of photovoltaic (PV) panels to harness solar energy, a solar charge controller to regulate energy flow and prevent battery overcharging or damage, and a battery to store energy for later. As well, power distribution ensures the allocation of power to multiple devices simultaneously. A grid-down energy strategy is crucial to any communication-related emergency, be it CB, FRS, GMRS, MURS or PMR radio, UHF CB, DMR, DStar, Meshtastic or LoRa communications.

Radio Friendly MPPT charge controller for Off-Grid Radio Comms

30 November 2023 at 02:03
The author discusses choosing a solar charge controller suitable for radio communication. He focuses on three criteria: portability, radio frequency quietness, and Maximum Power Point Tracking (MPPT) functionality. Recommending Genasun due to its compatibility with these requirements, he mentions his dissatisfaction with another brand, Victron, that caused excessive radio frequency noise. For optimal results, he suggests keeping devices DC powered and using no inverters. He provides specific instructions about matching controllers to battery and solar panel specs, and suggests parallel configuration for Genasun controllers.

The Off Grid Ham 100 Watts For $300 Solar Project -2023 Update

19 November 2023 at 03:55

A classic never goes out of style. Way back in 2016 I posted the Off Grid Ham 100 Watts for $300 Solar Plant. Even today, that article is still hugely popular and one of the most viewed posts on this website. In a 2020 update, the $300 threshold not only... Read more Β»

The post The Off Grid Ham 100 Watts For $300 Solar Project -2023 Update appeared first on Off Grid Ham.

Perovskite Solar Update.

25 July 2023 at 03:03

The β€œholy grail” of solar energy? It’s been over six years since Off Grid Ham first covered perovskite solar. For the unfamiliar, perovskite solar is a new type of photovoltaic technology that is based on perovskite-structure crystals. There are several advantages. First, is efficiency. Perovskite solar is far more efficient... Read more Β»

The post Perovskite Solar Update. appeared first on Off Grid Ham.

Planning For Off Grid Home Solar.

27 April 2023 at 01:15

Wish list. Most off grid hams are off grid only for portable operations. Many of them would like a larger, permanent home system but don’t know where to start or what such a project involves. If having an off grid home solar power system has been a longtime wish, this... Read more Β»

The post Planning For Off Grid Home Solar. appeared first on Off Grid Ham.

PowerFilm solar panel vs hunting rifle

1 August 2023 at 04:11
A demonstration showcased the durability of PowerFilm Solar's portable panels, enduring multiple hits from a .25 caliber rifle yet continuing to perform. Despite numerous punctures, the panels' peak current decreased from 0.73 to 0.47 amps but remained stable. PowerFilm Solar, an American company, offers these robust panels excellent for mission-critical tasks, illustrating quality differences between brands.

It *is* possible to have an RF-quiet home PV (solar) electric system!

By: KA7OEI
30 June 2023 at 15:55

Figure 1:Β  Half of the array on my garage - the other half is
on the west-facing aspect.
There's a bit of shade in the morning around the end of June,
but it detracts little during the peak solar production
of the day - the hours on either side of "local" noon.
Click on the image for a larger version
For the past several years an incremental nemesis of amateur radio operation on the HF bands is solar power and the cover article of the April 2016 issue of QST magazine, "Can Home Solar Power and Ham Radio Coexist?" (available online HERE) brings this point home.

Personally, I thought that the article was a bit narrow in its scope, with an unsatisfying conclusion (e.g. "The QRM is still there after a lot of effort and expense, but I guess that it's OK") - but this impression is understandable owing to the constraints of the medium (magazine article) and the specific situation faced by the author.

Solar power need not cause QRM:

I can't help but wonder if others that read the article presumed that amateur radio and home solar were incompatible - but I know from personal experience that this is NOT necessarily the case:Β  There are configurations that will not produce detectable QRM on amateur bands from 160 meters and higher.

Before I continue, let me state a few things important to the context of this article:

Expertise in HF radio interference and home solar installations seems to mutually exclusive - which is to say that you will be hard-pressed to find anyone who is familiar with aspects of both.Β  This means that in the solar industry itself, you will not likely find anyone who can offer useful advice in putting together a system that will not contribute to the crescendo of electrical noise.
I have heard that many installers (at least in my area) will strongly pressure their potential customers to use microinverter-based systems - and this my experience as well:Β  From the very start of the process, I was adamant that the design of my system would be series string using SunnyBoy inverters which were known to me to be RF-quiet.Β  If your installer will not work with you toward your goals, consider a different company.
Designing an "RF-quiet" system as described here may incur a trade-off in available solar production as the use of microinverters can eke out additional efficiencies when faced with issues such as shading and complicated roofs that present a large number of aspects with respect to insolation (e.g. amount of light energy that can be converted to electricity).Β  Only in the analysis of proposed systems appropriate for your case can you reasonably predict the magnitude of this and whether or not you find it to be acceptable.
What is presented here is my own experience and that of other amateur radio operators with similar PV (PhotoVoltaic) system.Β  The scope of this experience is necessarily limited owing to the fact that when spending tens of thousands of dollars, one will understandably "play it safe" and pick a known-good configuration.
I will be the first to admit that there are likely other "safe" (low RF noise) combinations of PV equipment that can be demonstrated to be "clean" in terms of radio frequency interference.Β  I have anecdotally heard of other configurations and systems, but since I have not looked at them first-hand, I am not willing to make any recommendations that could result in the outlay of a large amount of money.Β  For this reason, please don't ask me a question like "What about inverter model 'X' - does it cause RFI?" as I simply cannot answer from direct experience.

An example system:

The system at my house consists of two series-string Sunny Boy grid-tie inverters:Β  I can unequivocally state that this system, which has both a SB 5000TL-US-22 (5 kW) and an SB3.8-1SP-US-40 (3.8kW) does not cause any detectable RF interference on any HF frequency or 160 meters - and I have yet to detect any interference on 6 meters, 2 meters or 70cm.Β  Near the LF and lower MF band (2200 and 630 meters, respectively) some emissions from these inverters can be detected - but none of the switching harmonics (about 16 kHz) land within either of these bands.Β Β 

Figure 2:Β 
One of two inverters in the garage.Β 
The Ethernet switch (upper right) produces
more RF noise than the inverter!
Click on the image for a larger version
This PV system is very simple:Β  I have a detached garage with a north-south ridge line meaning that the roof faces east and west.Β  While this orientation may seem to be less than ideal compared to a south-facing roof, it actually produces equal or greater power during the summer than a south-facing roof - and there are two usable surfaces onto which one can place panels (east and west) whereas one would typically not place any panels on a north-facing roof.Β  This means that one may be able to put twice as many panels on a symmetrical east-west facing roof than a south-facing roof.


Simple roof configuration can equal low noise:

The "simple" roof also has another advantage:Β  All panels on the faces are oriented the same and a larger number of panels may simply be wired in series.

This simple fact means that known-quiet series-string inverters may be used and known noise-generating components may be omitted from the system - namely, many models of "microinverters" and optimizers.Β  Both of these devices - despite being very different in their operation - are installed on a "per panel" basis and able to adjust the overall contribution of each panel to maximize the energy input of the entire solar power system.

Having each panel individually optimized for output power sounds like a good idea - and in most cases it is - but this nicety should be taken in context with the goals in mind - but considering that the panels themselves represent a rather small portion of the overall system cost, efficiency losses from not having optimizers can often be offset with the addition of more panels.Β  To be fair, it is not always possible to simply "add more panels" to make up for loss of production - but this must be carefully weighed against a major goal, which is to produce a "noise free" PV system.

The options have changed:

Since the 2016 article was written, the number of options for series-string inverters has significantly increased and the prices have gone down, allowing options to be considered now that may have been dismissed at that time.Β  Take the article as an example.

From the photographs accompanying the article, there appear to be two different aspects of panels:Β  A large array consisting of 30 panels, all seeming to face the same direction;Β  a smaller array of 8(?) panels:Β  There appears to be an array of 4 panels, but let us presume that this is an independent energy system.

Assuming that each panel is rated for 300 watts (likely higher than a circa-2016 panel) and that one would wish to limit the maximum open-circuit potential to about 450 volts, this implies the use of at least four MPPT circuits:Β  The 8 panel array and three arrays consisting of 10 series panels, each.Β  The maximum output of this system would theoretically be about 11.4 kW - but since one can optimistically expect to attain only about 80% of this value in a typical installation the use of an inverter system capable of 10 kW, as stated in the article, is quite reasonable.

Back in 2016, it would be reasonable to have a 10kW series string inverter with two MPPT inputs representing two separate inputs that could be independently optimized.Β  If such an inverter were used, this would mean that one input would have just 8 panels and the other would have all 30 panels on the main array - not particularly desirable in terms of balancing.Β  While all 30 of the panels in the larger array would ostensibly be producing the same output, snow, leaves and shading might cause the loss of efficiency should certain parts be thus impaired.

Having already ruled out the optimizing of each panel independently in the interest of having a "known-quiet" system, we might want to split things up a bit.Β  As an example, a single 10kW inverter with two MPPT inputs could be replaced with a pair of 5 kW inverters, each with 3 MPPT inputs and having a total of six independent DC inputs allowing the 8 panels of the isolated roof to be optimized together and the remaining 30 panels being divided into 5 arrays of about 6 panels, each.

The 2016 article did not mention the price the system, but a reasonable estimate for that time would be around US$35000 - and it was mentioned, in passing, that the cost of RFI mitigation might have been about 10% of the total system cost, implying about $3500 - about the cost of two Sunny BoyΒ  SB5.0 5 kW series-string inverters, each with three MPPT inputs.

Replicating success:

At least two other local amateur radio operators used the same recipe for low-noise PV systems:Β  Series-string SunnyBoy grid-tie inverters - specifically the SB 3800TL, SB 5000TL and SB3.8s.Β  In none of these cases could RFI be detected that could be attributed to the inverter - and the only noise to be detected was with a portable shortwave receiver held within a few inches of the display.

What is known not to be quiet:

From personal experience I know for certain that microinverters such as the older Enphase M190 can be disastrous for HF, VHF and UHF reception.Β  As noted in the QST article, the Enphase power optimizers (model number not mentioned) also caused QRM.

Figure 3:
The two Tesla Powerwalls, gateway and electrical sub-
panels for the system located remotely on the east wall
of the house.
Click on the image for a larger version

Additionally, it has been observed that the Solaredge inverters - particularly coupled with optimizers - have caused tremendous radio frequency interference:Β  The aforementioned April, 2016 QST article about solar RFI deals with this very combination.

It probably won't work in all cases.

Compared to some installations that I have seen, my system - or the one in the 2016 article - are very simple cases - and there are a number of practical limitations, which include:

  • A "minimum" array size limitation.Β  Taking the Sunny boy SB5.0 as an example, there is a 90 volt minimum input which means that one would (very conservatively) want at least four 60-cell panels on each circuit.Β  This limitation may affect what areas on a roof may be candidates for placement of solar panels, reducing the total system capacity as compared to what might be possible with individually-optimized panels.
  • Systems with complicated shading.Β  If there are a number of trees - or even antennas and structures - portions of sub-strings may be shaded, causing reduction in output and compared to individually-optimized panels, series-strings are at a disadvantage, but careful selection of sub-string geometry can help.Β  For example, if a tower shades a series of panels during the period of highest production, placing all of those panels on one particular string can help isolate the degradation - but this sort of design consideration will require careful analysis of each situation.

Final words:

The design, configuration and layout of a home (or any) PV system is more complicated than depicted here and any system to be considered would have to take into account.Β  While I am certain that there are other ways to make an "RF Quiet" PV system, this article was intended to be limited to configurations and equipment with which I have direct experience.

Again, the likelihood of finding a "solar professional" who thoroughly understands RFI issues and knows which type of equipment is RF-quiet is unlikely, so it is up to you as the potential recipient of QRM to do the research.

Other articles at this blog on related topics:


This page stolen from ka7oei.blogspot.com


[End]

❌
❌