❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

2024 10m QRSS Challenge: - M0GBZ & G0FTD in England - 3rd June


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 3rd of June, I added M0GBZ and G0FTD to the tally during a short skip Sporadic-E opening at about 16:00 UTC.Β 

The map below shows the location of the stations shown in the screen grab above.


TF3HZ in Iceland is a relatively easy catch at 1576kms and I got a screengrab of his signal back in January. The stations near London in the east of England are about 560 to 650kms from my location and require the skip distance for the Sporadic-E opening to be shorter than usual.

Getting good screen captures for both M0GBZ and G0FTD is quite difficult for me. It's not really the distance as it's June and there are plenty of short skip openings on 28 MHz. The problem is that the signals from G0PKT and G0MBA are so much stronger.

This is my usual screen grab during a short skip opening...


My sound card in the PC seems to get overloaded by the signals from G0MBA and G0PKT and I get a screen of false signals. If I adjust the audio levels to a low enough level to get rid of these false signals, M0GBZ and G0FTD disappear.

What happened on the 3rd of June is that there was a very small footprint for the Sporadic-E signal.


The footprint of a Sporadic-E opening tends to be in the shape of an oval and as suggested by the image above, the footprint favoured both M0GBZ and G0FTD with G0MBA and G0PKT being at the edge of the footprint.

This meant I could get good QRSS signals from both M0GBZ and G0FTD while the signals from the G0MBA - G0PKT duo were weaker and not overloading my sound card.

What's really interesting about this is the relatively short distances between these stations. G0FTD is at the south side of the Thames Estuary while the G0MBA - G0PKT duo are at the north side, a distance of about 50 kms.

From my location on the south coast of Ireland which is about 650kms to the west, I could see how the small Sporadic-E footprint allowed me to hear stronger from one side of the Thames Estuary compared to the other side.


This is a nice example of just how small and localised Sporadic-E openings can be. You can hear big signals from a particular station and someone a short distance away hears little or nothing.

This gets even more pronounced for higher frequencies like 50 MHz, 70 MHz or even 144 MHz.

QRSS... It also shows how QRSS (slow morse code) signals allow you to 'see' the propagation moving. With modes like WSPR or FT8, you either get a decode or you don't.Β 

With QRSS, you can see the propagation moving in real time. Several times during short skip openings, I have seen QRSS signals disappear in the space of a minute as the Sporadic-E footprint moves.

In summary... That brings the QRSS tally so far for 2024 up to 23-callsigns & 10 DXCC.

1) 8th Jan 2024: VE1VDM - DXCC #1
2) 10th Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9
17) 2nd Mar 2024: WA1EDJ
18) 5th Mar 2024: FR1GZ/B - DXCC #10
19) 30th Apr 2024: IK1WVQ
20) 8th May 2024: IW0HK/B
21) 14th May 2024: IZ1KXQ/B
22) 3rd Jun 2024: M0GBZ
23) 3rd Jun 2024: G0FTD

Successful test of sending QRSS signals on 28 MHz...


Introduction... QRSS is a beacon mode where callsigns are sent at very slow speeds in morse code and it's a useful mode for investigating radio propagation. The signal can usually be found on the main HF bands just below the WSPR signals.

For example, the 10m WSPR frequency is 28.1246 MHz USB and the WSPR signals are in the audio range of 1400 to 1600 Hz. Using the same dial frequency, the QRSS signals are about 400 Hz lower in frequency around 1100 Hz.

This has the advantage of using programmes like WSJT-X to decode the WSPR signals while at the same time, you can see the QRSS signals with programmes like SpectrumLab which displays the audio spectrum.

Some people operate 'grabbers' which take screen grabs of the QRSS band from their receiver and these are them put up on a website. They usually update every 10 minutes.

28 MHz tests... At about 12:00 UTC on the 29th of May 2024, I noticed that there was a Sporadic-E opening between Sweden and Ireland. The image above shows how my callsign was successfully received by the SA6BSS grabber in Sweden at a distance of about 1554kms.


How to send QRSS signals... If you are already using FT8 with programmes like WSJT-X then you are all set up for sending QRSS signals. For my tests, I was just using my HF radio and a PC.

The first thing I did was to go to the PA2OHH website and using the SPACE, DOT & DASH tabs, I generated my callsign in morse code. The audio can be adjusted from 1500 to 1900 Hz. The QRSS mode can be adjusted for length as well as whether it is on/off or uses Frequency Shift Keying (FSK).


After pressing 'Start QRSS', it's just a case of waiting for the sequence to start which happens at 10-minute intervals past the hour e.g. 12:00, 12:10, 12:20 and so on. In my case, it was really as simple as holding the microphone next to the PC speaker and pressing the PTT once the QRSS sequence started.

In terms of frequencies, I used the default 1600 Hz option. I tuned the radio down about 300 Hz from the WSPR frequency to about 28.1243 MHz USB. This made sure that my transmit signal was below the WSPR band and above the other QRSS signals.


If we look at my signal above in more detail, the bright part at the start was when the audio from the PC speaker was too loud and I had to turn it down. The rest of the QRSS audio resulted in an output power of about 5-10 watts from my radio.

There is also a very obvious upward drift in the signal! My callsign was sent over the space of just over 5-minutes and in that time, my signal drifted upwards by about 10 Hz.

My HF radio is quite old and for modes like CW or SSB, 10 Hz is really nothing. If you were to listen to CW or SSB signals from my HF rig then you'd hear nothing wrong. It's just that with QRSS, tiny changes like 10Hz become very obvious.

Nearly all QRSS signals on the bands are from dedicated transmit modules which are GPS stabilised. You can see these is the top image as nice straight signals. In my case, there is probably some crystal oscillator in the transmit chain in my HF radio that is being turned on and is drifting slowly as it warms up.Β 

Aurora... Back on the 10th of May 2024, I tried this QRSS test as well during the big aurora.


Using the same grabber in Sweden, the signals from the SE of England are there and are of course distorted by the aurora. I'm almost certain the signal above is me and it even has that little telltale upward drift.

In hindsight, I probably should have used on/off keying rather than frequency shift keying and the signal would have been a lot more obvious. It's still pretty cool to see your own signal coming back from the auroral region.

In conclusion... What I have outlined above is basically just putting the microphone from your radio up to the speaker of a PC and checking a website to see if your signal was heard, it's really that simple. It would be nice to see others giving it a try.

Links... Here are some useful sources...

1)Β https://groups.io/g/qrssknights - This email group is the place to go for all things QRSS related.

2)Β https://www.qsl.net/pa2ohh/21htmlqrss01.htm - PA2OHH website for generating QRSS signals.

3)Β https://www.qsl.net/sa6bss/ - SA6BSS grabber in Sweden.

4)Β https://www.qsl.net/pa2ohh/grabber.htm - PA2OHH grabber in the SE of Spain.

5)Β https://qsl.net/g4iog/ - G4IOG grabber in SE England

6)Β https://www.qsl.net/g0ftd/grabber.htm - G0FTD operates a grabber from various online receivers.

7)Β https://qsl.net/wa5djj/ - WA5DJJ operates several grabbers from New Mexico in the United States.

8)Β https://swharden.com/qrss/plus/ - AJ4VD has links to a lot of grabbers

2024 10m QRSS Challenge: - IZ1KXQ beacon in Italy - 14th May


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 14th of May, I got a screengrab of the QRSS signal 'SP' which was sent by the IZKXQ/B beacon in the north of Italy.

Usually, nearly all of the QRSS signals on the 10m band are on 28.1246 MHz and the audio of the signals is about 400-500Hz below the WSPR signals. In this case, the IZ1KXQ beacon was on 28.3215 MHz.

In the image above, the fuzzy part of the signal is when it was sending the callsign of the beacon in normal morse code. The QRSS 'SP' part is sent after this.

The beacon runs 0.1-watts or 100-milliwatts into an inverted V-dipole antenna.


The map above shows the path and the distance was about 1600kms. The signal was almost certainly via Sporadic-E and it's pretty much the ideal distance for that mode of propagation.

In summary... That brings the QRSS tally so far for 2024 up to 21-callsigns & 10 DXCC.

1) 8th Jan 2024: VE1VDM - DXCC #1
2) 10th Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9
17) 2nd Mar 2024: WA1EDJ
18) 5th Mar 2024: FR1GZ/B - DXCC #10
19) 30th Apr 2024: IK1WVQ
20) 8th May 2024: IW0HK/B
21) 14th May 2024: IZ1KXQ/B

2024 10m QRSS Challenge: - VK4BAP in Australia 28th Feb


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 28th of February, I noticed VK4BAP Queensland, Australia.

For my first attempt above, I managed to get a positive ID on the signal. However, a very strong OH station from Finland just above using WSPR was playing havoc with my audio levels. I tried to adjust the volume as best as I could and managed some sort of screen grab.

Finland is just one F2 layer hop from my location on the south coast of Ireland and signals are usually very strong. The QRSS signal from Australia by contrast is just about visible in the noise.

It's a bit like waiting on the bank of a river and waiting for a fish to bite. I'd start to get a reasonable QRSS signal from VK4BAP only for the OH station to then clobber it! :o)

Eventually, the timing got to a stage so that the VK station started just after the OH station had finished transmitting and I managed to get a reasonable if somewhat weak screengrab.


My target at the end of the day is to get a full screengrab of a signal which can be positively identified regardless of how weak it is.

The distance was about 16,070 kms and the propagation mode was via multiple F2 layer hops. There may have been some chordal hop in there as well. The time for the reception reports was about 09:00 UTC.


In summary... That brings the QRSS tally so far for 2024 up to 16-callsigns & 9 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9

Addendum: Brian, VK4BAP reports that this was his first day ever transmitting QRSS. He was using 1 watt to a Moxon beam pointing to Europe.

2024 10m QRSS Challenge: - NM5ER 27th Feb


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 27th of February, I managed to get a good capture of NM5ER in New Mexico.

The QRSS signal of NM5ER can be seen above at the top of the screen and this was the best one of several that I saw today. It really was a marginal signal and it didn't take much fading for me to lose large parts of the signal.

By contrast, the other signals listed about were a lot more consistent.


The distance was about 7800kms and I suspect the propagation mode was either two long or three shorter F2 layer hops.

In summary... That brings the QRSS tally so far for 2024 up to 15-callsigns & 8 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER

Addendum:Β Evans NM5ER confirms that his location is Las Cruces in New Mexico (DM62qq). He is running about 1.75 watts into a MFJ-1982LP End Fed Half-Wave Wire antenna tuned to 28 MHz.


2024 10m QRSS Challenge: - PY3FF 21st Feb


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 21st of February, I managed to get a good capture of PY3FF in Brazil, South America.

The QRSS signal from PY3FF can be seen at the top of the screen grab above. Rafael reports running 700 milliwatts into a dipole from his location in the south of Brazil.


The path length was around 10,000kms and it's likely it was three F2 layer hops. The G0MBA/G0PKT duo also shown in the screen grab are from the east coast of England and are about 700kms from my location. I believe that I am getting those signals via F2 layer backscatter.

The VOACAP propagation map below shows that the path from my location to the south of Brazil is reasonably good.


It is however one of my worst directions as I have a hill that is 3-degrees above the horizon. On 28 MHz, the signals must have been above that angle.

In summary... That brings the QRSS tally so far for 2024 up to 13-callsigns & 8 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8

2024 10m QRSS Challenge: - IK2JET & N8NJ 16th Feb


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 16th of February, I managed to get screen captures of IK2JET in the north of Italy and N8NJ in Ohio in the US.

1) IK2JET... At 16:17 UTC, I managed to get a successful screen capture of the QRSS signal from Alberto, IK2JET.


As can be seen from the image above, the signal wasn't too strong but it was a positive ID all the same and a new DXCC for 2024.

You can note how the QRSS signal has a slight 'fuzz' to it and is slightly distorted. It's similar to the backscatter signals from G0PKT & G0MBA which are going across the centre of the screen.

2) N8NJ... At 16:24 UTC, I got another screen capture and this time, I got a nice QRSS signal from Larry, N8NJ in Ohio.


The signal from N8NJ can be seen above at the top of the screen and it looks cleaner with less 'fuzz' than some of the other signals.

These are the WSPR decodes that I got from N8NJ during that hour and it suggests that the QRSS signal might have been in the region of -10dB.

localΒ  Β y-m-d txCall txGrid rxCall rxGrid MHz W SNR drift kmsΒ Β 
2024-02-16 17:00 N8NJ EN81go EI7GL IO51tu 28.126084 1 -13 0 5574Β 
2024-02-16 16:50 N8NJ EN81go EI7GL IO51tu 28.126082 1 -5 0 5574Β 
2024-02-16 16:40 N8NJ EN81go EI7GL IO51tu 28.126084 1 -13 0 5574Β 
2024-02-16 16:30 N8NJ EN81go EI7GL IO51tu 28.126083 1 -10 0 5574Β 
2024-02-16 16:20 N8NJ EN81go EI7GL IO51tu 28.126084 1 -10 1 5574Β 
2024-02-16 16:10 N8NJ EN81go EI7GL IO51tu 28.126084 1 -7 0 5574Β 
2024-02-16 16:00 N8NJ EN81go EI7GL IO51tu 28.126084 1 -12 0 5574

Propagation Modes???.... What were the propagation modes responsible for these signals? I generated this propagation map below with VOACAP and the stations are marked in black.



N8NJ at 5570kms seems to be about right for two F2 layer hops and that one is easily explained.

The signal from IK2JET at 1550kms is more difficult. If it was a few more hundred kms away, I'd be more certain of one F2 hop but it seems a bit close.Β 

It could be Sporadic-E but we're in the middle of February and not the Summer Sp-E season. I did note plenty of other of WSPR signals on the day from the white skip zone around my location.

The signal as noted had some 'fuzz' to it which is unlike a nice clean one hop signal and that might suggest a back scatter or multi-path quality about it.

Sometimes, you just look at the evidence and it's hard to come to any firm conclusion.

In summary... That brings the QRSS tally so far for 2024 up to 12-callsigns & 7 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ

2024 10m QRSS Challenge: - VA3RYV 6th Feb


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 6th of February, I managed to get a good capture of VA3RYV in Ontario, Canada.

The QRSS signal of VA3RYV can be seen in the image above. It starts with a 'Slow Hell' image of the VA3RYV callsign followed by the signal in morse code. The whole sequence lasted about 6-minutes.

Wes, VA3RYV was using 100-milliwatts output power into a have-wave dipole about 15m above ground level. The path length was around 5,255kms and it's likely it was two F2 layer hops.


In summary... That brings the QRSS tally so far for 2024 up to 10-callsigns & 6 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV

Remote (POTA) operation from the Conger Mountain BLM Wilderness Area (K-6085)

By: KA7OEI
27 December 2023 at 07:03

It is likely that - almost no matter where you were - you were aware that a solar eclipse occurred in the Western U.S. in the middle of October, 2023.Β  Wanting to go somewhere away from the crowds - but along the middle of the eclipse path - we went to an area in remote west-central Utah in the little-known Conger Mountains.

Clint, KA7OEI operating CW in K-6085 with Conger
mountain and the JPC-7 loaded dipole in the background.
Click on the image for a larger version.

Having lived in Utah most of my life, I hadn't even heard of this mountain range even through I knew of the several (nearly as obscure) ranges surrounding it.Β  This range - which is pretty low altitude compared to many nearby - peaks out at only about 8069 feet (2460 Meters) ASL and is roughly 20 miles (32km) long.Β  With no incorporated communities or paved roads anywhere nearby we were, in fact, alone during the eclipse, never seeing any other sign of civilization:Β  Even at night it was difficult to spot the glow of cities on the horizon.

For the eclipse we set up on BLM (Bureau of Land Management) land which is public:Β  As long as we didn't make a mess, we were free to be there - in the same place - for up to 14 days, far more than the three days that we planned.Β  Our location turned out to be very nice for both camping and our other intended purposes:Β  It was a flat area which lent itself to setting up several antennas for an (Amateur) radio propagation experiment, it was located south and west of the main part of the weather front that threatened clouds, and its excellent dark skies and seeing conditions were amenable to setting up and using my old 8" Celestron "Orange tube" C-8 reflector telescope.

(Discussion of the amateur radio operations during the eclipse are a part of another series of blog entries - the first of which is here:Β  Multi-band transmitter and monitoring system for Eclipse monitoring (Part 1) - LINK)

Activating K-6085

Just a few miles away, however, was Conger Mountain itself - invisible to us at our camp site owing to a local ridge - surrounded by the Conger Mountain BLM Wilderness Area, which happens to be POTA (Parks On The Air) entity K-6085 - and it had never been activated before.Β  Owing to the obscurity and relative remoteness of this location, this is not surprising.

Even though the border of the wilderness area was less than a mile away from camp as a crow files, the maze of roads - which generally follow drainages - meant that it was several miles driving distance, down one canyon and up another:Β  I'd spotted the sign for this area on the first day as we our group had split apart, looking for good camping spots, keeping in touch via radio.

Just a few weeks prior to this event I spent a week in the Needles District of Canyonlands National Park where I could grab a few hours of POTA operation on most days, racking up hundreds of SSB and CW contacts - the majority of being the latter mode (you can read about that activation HERE).Β  Since I had already "figured it out" I was itching to spend some time activating this "new" entity and operating CW.Β  Among those others in our group - all of which but one are also amateur radio operators - was Bret, KG7RDR - who was also game for this and his plan was to operate SSB at the same time, on a different band.Β  As we had satellite Internet at camp (via Starlink) we were able to schedule our operation on the POTA web site an hour or so before we were to begin operation.

In the late afternoon of the day of the eclipse both Bret and I wandered over, placing our stations just beyond the signs designating the wilderness study area (we read the signs - and previously, the BLM web site - to make sure that there weren't restrictions against what we were about to do:Β  There weren't.) and several hundred feet apart to minimize the probability of QRM.Β  While Bret set up a vertical, non-resonant end-fed wire fed with a 9:1 balun suspended from a pole anchored to a Juniper, I was content using my JPC-7 loaded dipole antenna on a 10' tall studio light stand/tripod.

Bret, KG7RDR, operating 17 Meter SSB - the mast and
vertical wire antenna visible in the distance.
Click on the image for a larger version.
Initially, I called CQ on 30 meters but I got no takers:Β  The band seemed to be "open", but the cluster of people sending out just their callsign near the bottom of the band indicated to me that attention was being paid to a rare station, instead.Β  QSYing up to 20 meters I called CQ a few times before being spotted and reported by the Reverse Beacon Network (RBN) and being pounced upon by a cacophony of stations calling me.

Meanwhile, Bret cast his lot on 17 meters and was having a bit more difficulty getting stations - likely due in part to the less-energetic nature of 17 meter propagation at that instant, but also due to the fact that unlike CW POTA operation where you can be automatically detected and "spotted" on the POTA web site, SSB requires that someone spot your signal for you if you can't do it yourself:Β  Since we had no phone or Internet coverage at this site, he had to rely on someone else to do this for him.Β  Despite these challenges, he was able to make several dozen contacts.

Back at my station I was kept pretty busy most of the time, rarely needing to call CQ - except, perhaps, to refresh the spotting on the RBN and to do a legal ID every 10 minutes - all the while making good use of the narrow CW filter on my radio.

As it turned out, our choice to wait until the late afternoon to operate meant that our activity spanned two UTC days:Β  We started operating at the end of October 14 and finished after the beginning of October 15th meaning that with a single sitting, each of us accomplished two activations over the course of about 2.5 hours.Β  All in all I made 85 CW contacts (66 of which were made on the 14th) while Bret made a total of 33 phone contacts.

We finally called it quits at about the time the sun set behind a local ridge:Β  It had been very cool during the day and the disappearance of the sun caused it to get cold very quickly.Β  Anyway, by that time we were getting hungry so we returned to our base camp.

Back at camp - my brother and Bret sitting around
the fake fire in the cold, autumn evening after dinner.
Click on the image for a larger version.

My station

My gear was the same as that used a few weeks prior when I operated from Canyonlands National Park (K-0010):Β  An old Yaesu FT-100 equipped with a Collins mechanical CW filter feeding a JPC-7 loaded dipole, powered from a 100 amp-hour Lithium-Iron-Phosphate battery.Β  This power source allowed me to run a fair bit of power (I set it to 70 watts) to give others the best-possible chance of hearing me.

As you would expect, there was absolutely no man-made noise detectable from this location as any noise that we would have heard would have been generated by gear that we brought, ourselves.Β  I placed the antenna about 25' (8 meters) away from my operating position, using a length of RG-8X as the feedline, placing it far enough away to eliminate any possibility of RFI - not that I've ever had a problem with this antenna/radio combination.

I did have one mishap during this operation.Β  Soon after setting up the antenna, I needed to re-route the cable which was laying on the ground, among the dirt and rocks, and I instinctively gave it a "flip" to try to get it to move rather than trying to drag it.Β  The first couple of "flips" worked OK, but every time I did so the cable at the far end was dragged toward me:Β  Initially, the coax was dropping parallel with the mast, but after a couple flips it was at an angle, pulling with a horizontal vector on the antenna and the final flip caused the tripod and antenna to topple, the entire assembly crashing to the ground before I could run over and catch it.

The result of this was minor carnage in that only the (fragile!) telescoping rods were mangled.Β  At first I thought that this would put an end to my operation, but I remembered that I also had my JPC-12 vertical with me which uses the same telescoping rods - and I had a spare rod with that antenna as well.Β  Upon a bit of inspection I realized, however, that I could push an inch or so of the bent telescoping rod back in and make it work OK for the time-being and I did so, knowing that this would be the last time that I could use them.

The rest of the operating was without incident, but this experience caused me to resolve to do several things:

  • Order more telescoping rods.Β  These cost about $8 each, so I later got plenty of spares to keep with the antenna.
  • Do a better job of ballasting the tripod.Β  I actually had a "ballast bag" with me for this very purpose, but since our location was completely windless, I wasn't worried about it blowing over.
  • If I need to re-orient the coax cable, I need to walk over to the antenna and carefully do so rather than trying to "flip" it get it to comply with my wishes.

* * *

Epilogue:Β  I later checked the Reverse Beacon Network to see if I was actually getting out during my initial attempt to operate on 30 meters:Β  I was, having been copied over much of the Continental U.S. with reasonably good signals.Β  I guess that everyone there was more interested in the DX!

P.S.Β  I really need to take more pictures during these operations!


This page stolen from ka7oei.blogspot.com

[END]

Remote (POTA) operation from Canyonlands National Park (K-0010)

By: KA7OEI
18 October 2023 at 00:30

As I am wont to do, I recently spent a week camping in the "Needles" district of Canyonlands National Park.Β  To be sure, this was a bit closer to "glamping" in the sense that we had a tent, a flush-toilet a few hundred feet away, plenty of food, solar panels for power and didn't need to haul our gear in on our backs - at least not any farther than between the vehicle(s) and the campsite.

While I did hike 10s of miles during the week, I didn't hike every day - and that left a bit of "down time" to relax and enjoy the local scenery.

As a first for me - even though I have camped there many times and have even made dozens of contacts over the years on HF - I decided to do a real POTA (Parks On The Air) activation.Β  In the days before departure I finally got around to signing up on the pota.app web site and just before I left the area of cell phone coverage (there is none at all anywhere near where we were camping) I scheduled an activation to encompass the coming week as I had no idea exactly when I would be operating - or on what bands.

Figure 1:
The JPC-7 loaded dipole at 10', backgrounded by red rock.
Click on the image for a larger version.

* * *

It wasn't until the day after I arrived that I finally had time to operate.Β  As it was easiest and most convenient to do so, I deployed my "modified" JPC-7 loaded dipole antenna (an antenna I'll describe in greater detail in a future post) affixing it atop a tripod light stand that could be telescoped to about 10 feet (3 meters) in height - attaching one of its legs to the swing-out grill of the fire pit to prevent it from falling over.Β  Being only about 10 feet from the picnic table, it offered a relatively short cable run and when it came time to tune the antenna, I simply disconnected it from the input of the tuner, connected it to my NanoVNA and adjusted the coils:Β  In so-doing, I could change bands in about two minutes.

The radio that I usually used was my old FT-100 - typically running at 50 watts on CW, 100 watts on SSB, but I would occasionally fire up my FT-817Β  and run a few contacts on that as well.Β  As you would expect, the gear was entirely battery-powered as there is not a commercial power line within 10s of miles of this place:Β  Often, one of my batteries would be off being charged from a solar panel, requiring that I constantly rotate through them.

* * *

For reasons of practicality - namely the fact that I would be operating in (mostly) daylight - and for reasons related to antenna efficiency, I mostly operated on 30 meters and higher.Β  Because we were outside, this made a computer screen very difficult to see so I logged on a piece of paper - also convenient because this method required no computer or batteries!Β  The very first contact - a Park-to-Park - occurred on 15 meter SSB, but I quickly QSY'ed down to 17 meters and worked a few dozen stations on CW - breaking in my "CW Morse" paddle for the first time on the air:Β  It would seem that my scheduling the activation and my Morse CW being spotted by the Reverse Beacon Network caused the notice to go out automatically where I was quickly pounced on.

In using this paddle - made by CW Morse - for the first time I quickly discovered several things:

  • I've seen others using this paddle by holding it in their hand - but I was completely unable to do that:Β  I would get into the "zone" while sending and inevitably put my fingers on the "dit" and "dah" paddle's tension adjustment screws, causing me to send random elements:Β  At first I thought that something was amiss - perhaps RF getting into the radio - but one of the other folks I was with (who are also hams) pointed out what I was doing.
  • Since my CW Morse paddle has magnets in the base - and since the picnic table's top was aluminum - I stuck it to the bottom of a cast-iron skillet which solved the first problem, but I quickly discovered that the bottom of a well-used skillet is really quite smooth and lubricated with a fine layer of carbon.Β  What this meant was that not only did I have to use my other hand to keep the key from sliding around, I started looking like the carbon-covered operators of high-power Poulsen Arc transmitters of a century ago:Β  My arm and hand quickly got covered with a slight residue of soot!Β  I then made it a practice to at least wipe down the bottom of the pan before operating.
  • During contacts, I would randomly lose the "Dah" contact.Β  I was presuming that this was from dust getting into the contacts (I'm sitting outside!) as it usually seemed to "fix" itself when I would lean over and blow into the paddle, but in once instance when this didn't work at all I wiggled/rotated the 3.5mm TRS jack on the back and it started working again.Β  I'm thinking that the issue was just a flaky contact on the jack.

At some point I'll need to figure out a better means of holding this paddle down to keep it from sliding about - perhaps a small sheet of steel with bumpers and rubber feet - or simply learn to use the paddle with a much lighter touch!

Figure 2:
Operating CW from the picnic table, the paddle on a skillet!
Click on the image for a larger version.

With a few dozen CW contact under my belt I readjusted the antenna and QSYed down to 20 meter SSB where I worked several pages of stations, my voice getting a bit hoarse before handing the microphone over to Tim, KK7EF who continued working the pileup under my callsign.

* * *

After a while, we had to shut down as we needed the picnic table to prepare dinner - but this wasn't the last bit of activation:Β  Over the next few days - when time was available - I would often venture out on 40, 30, 20 and 17 meter CW - occasionally braving 17 meter SSB:Β  I generally avoided 20 meter SSB as the band generally seemed to be a bit busy - particularly during the weekend when some sort of activity caused the non-WARC bands to be particularly full.

* * *

By the end of the trip I had logged about 387 total contacts - roughly 2/3 of them being CW.Β  When I got home I had to transcribe the paper logs onto the computer and learned something doing this:Β  If you do such a transcription, try to avoid doing so late at night when you are tired - and always wait until the next day - whether you were tired or not - and go back and re-check your entries BEFORE uploading the logs to LOTW, eQSL and/or the POTA web site!Β  Being tired, I hadn't thought the above through very well and later had to go back and make corrections and re-upload.


This page stolen from ka7oei.blogspot.com

[END]


Now it’s time to learn CW

By: DL6JOE
10 January 2023 at 11:51

The Amateur radio class A license is done.

Now I have the head free to learn CW (Continuous Wave).Β 

I'll show you how I do it and give you some helpful links and tools.Β 

Helpful Links to learn CW

There are many sites that show you how to learn the Morse code.

I will introduce you a few of them, and show you which one of them I prefer to use.Β 

LCWO.net

It's a Multi Language Site and the first one that I have found after a quick search in Google.Β 

After the registration, you can use the site for free. It's helpful to know the ten finger system when you learn with lcwo.net.Β 

The site offers a statistics and many settings options.Β 

https://lcwo.net

Morse with Google

My first choice to learn letters, numbers and special characters.Β 

It's easy to use, and you can learn with the smartphone on every place you want.

For each character is shown a picture that is easy to learn. Ideal for visual learners.

It is simple to transfer what you have learned to Morserino's Morse Paddles because you use the same two fingers.Β 

https://morse.withgoogle.com/learn/

Video Course

A German CW Course from DL8MH on YouTube. I haven't a look on it until now.Β 

Playlist "Telegrafie fΓΌr AnfΓ€nger"

Morserino 32

The Morserino 32 was designed by OE3WKL.Β 

This is a kit that need a little soldering. The Morserino is a multifunctional morse-device (Keyer, Trainer, Decoder and Transceiver.)Β 

The feature list is long, and you can read completely on the site from Morserino.Β 

http://www.morserino.info/

CW Learning with Morserino 32

My way to learn the Morse code

I learn with different methods to reach my goal as fast as possible: The first QSO in CW.Β 

With the Morserino and the external Paddle, I learn to give the letters and characters.

Morse with Google supports me. With LCWO.net I generate MP3 to learn hearing the code.Β 

Training Paddle

I use this paddle for training. It's handy and great for outdoor activities like SOTA, COTA or POTA. It has three strong magnets on the bottom to attach it securely on your receiver.Β 

CW Paddle

Get it on Amazon: Mini CW Paddle*

Interesting and helpful about CW

I have found an interesting video about CW and other stuff. Do you know Beethoven's 5th? There is a hided Morse code in the song.Β 

CW is an intangible cultural heritage

Since 2014, CW has been included in the UNESCO catalog of intangible cultural heritage.Β Β 

The training Coin

You can get it on eBay or AliExpress. Search for CW decoder coin. This coin is useful to always have with you in your pocket trousers.

CW Decoder Coin

You can do it with light too

A simple flashlight is enough to give Morse code.Β 

Now it's your turn

How do you learn cw, or how did you learn it? Do you have any tips for me? Please write it in the comments.

*Amazon Affiliate Link

❌
❌