❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

6m Antenna Upgrade Part 5 – Antenna Installation and Station Integration

By: fkemmerer
5 November 2022 at 10:02

6m Antennas on our Main Tower

The final stage of our 6m Antenna Project was completed earlier this week. I began by gathering all of the hardware and components for the installation and staged them near our tower.

Project Components Ready for Installation

The installation of our new 6m antennas was a big project, and I was fortunate to have Matt Strelow, KC1XX, and Andrew Toth of XX Tower here to do the installation. We had many things go well during this project, and some good luck on a few items where we needed it.

Rearranging Antennas for the 7-Element LFA

The first step in the installation was to rearrange the antennas on the mast on our main tower. We moved our existing 2m yagi up to make space for the new 7-Element LFA yagi and installed it on our mast. We pulled the new LFA yagi about 30 ft above the ground on a tram line to check the SWR and adjusted the driven element before installing it on the mast.

New 7-Element LFA Yagi on Tower

New 7-Element LFA Yagi on the Tower

The first bit of luck was that we had enough rotator loop slack for our existing 2m yagi to move it up our mast about 4 ft without making a new feedline.

Removing 6m Elements from SteppIR’s

6m SteppIR Element Removal

SteppIR 6m Passove Element Removal

Our SteppIR yagis had 6m passive elements installed, and my modeling indicated that these elements would upset the pattern and performance of the new 6m yagis we are installing. Matt and Andrew came to the rescue on this one – they used an aluminum ladder rigged, as shown above, to remove the passive elements from both SteppIR yagis without taking them down. Note to our readers – do not try this a home!

Building the 6m Stacks

6m West Stack and 7 Element LFA

The next step in the project was to install the eleven 3-element LFA yagis that make up our new 6m stacks. This took some time as we had to work out and adjust mounting heights and the separation between the antennas in the stacks to avoid interference with guy cables, wire antennas, and other components on the tower. Andrew and Matt worked from the top of the tower to avoid climbing around the antennas after they were installed. At the end of the first day, we had the West-facing 3-stack installed on the tower.

All Eleven 6m Antenna Stack Installed

All Eleven 6m Antenna Stack Installed

The photo above shows the additional stacks facing Europe (on the left) and the south (on the right). With all the antennas installed, we were ready for the Power Dividers, feedlines, and electronics.

Feedlines, Electronics, and Switching

Hardline and Control Conduits

We used 1 5/8β€³ hardline coax for the main feedline from our shack to the 6m switching and electronics on our tower. I had previously installed conduits running from our tower to the shack, and we were able to get the new 1 5/8β€³ down the 100 ft conduit from our tower to the shack. The new hardline was added to the conduit (front left), which already had two 7/8β€³ hardlines in it. This part of the installation went smoothly, which was our next bit of good luck.

Hardline Connector Installation

Next, Matt installed N connectors on the new hardline. The photo above shows the hardline prep for the connector installation.

N Connector on the Main Feedline to Shack

N Connector on the Main Hardline to Shack

The photo above shows the completed connector installation.

Power Divider Installed on Tower

Power Divider Installed on Tower

The next step was to install the Power Dividers near the middle of each stack and hook up the phasing lines from the antennas. The photo above shows how the Power Dividers are mounted. We also ran 7/8β€³ hardline coax cables from the 7-element LFA yagi and from the Power Divider for the West stack on the top half of our tower down to the location where the Preamplifier Housing and Remote Antenna SwitchΒ is installed.

6m Preamp Housing and Antenna Switch Main Tower

The final step of the installation was to install the Preamplifier Housing and Remote Antenna Switch near the center of the bottom two stacks and hook all of the components up via LMR-400 coax jumpers.

Control Cable Interconnects on the Tower

Our tower has junction boxes installed at the base for interconnecting the many control cables for our antennas and electronics. It was a simple step to hook up the new Preamp Housing and Remote Antenna Switch to get everything working with our microHam control system. These junction points make it easy to rearrange and test our equipment on the towers when needed.

Updates on our VHF Tower

6m Preamp System on our VHF+ Tower

6m Preamp System on our VHF+ Tower

I built a second Preamp Housing for use with the existing 7-element 6m yagi on our VHF and Satellite Tower, and we installed that unit as well.

Control Cable Interconnect on our VHF+ Tower

Control Cable Interconnect on our VHF+ Tower

The junction box on this tower made the final hookup of the second Preamp Housing a snap.

Final Integration

We adjusted the length of the jumpers between the Power Dividers and the Remote Antenna Switch to optimize the SWRs of the stacks and tested all of the electronics on both towers via our microHam system. The stacks and the new 7-element LFA have SWRs at 1.3:1 or lower in the weak signal section of the 6m Band.

With everything connected and checked out, it was finally time to see what our new 6m Antenna System could do!

Initial Contacts

The Taurids Meteor Shower is active right now, so I’ve been making many Meteor Scatter contacts using our new antennas. The PSKreporter snapshot shows where I was heard this morning using MSK144 mode and the West antenna stack.

PSKreporter – 6m Meteor Scatter Reports

The background noise levels on the new antennas are between 3 dB and 9 dB, better than my previous 6m antennas were. This makes working weaker stations much easier to do.

We have not had much Es propagation since we finished the project earlier this week. I did catch a marginal Es opening yesterday and made an FT8 contact with CE8EIO in Chile. This contact is about 29,350 km from our QTH here in New England. It is the longest 6m contact I have ever made with South America.

PSK Reporter - CE8EIO Contact

PSKreporter – CE8EIO Contact in Chile

As you can see from the PSKreporter data, I was heard very well at CE8EIO. This is very encouraging. I have been making FT8 contacts with the midwest and the southeast United States using the new antennas as well. Given the very limited Es propagation at this time, I would say that the new antennas are a significant improvement.

More About our Project

Here are some links to other articles in our series about our 6m Antenna Upgrade Project:

We have completed all the steps in our 6m Antenna Upgrade Project. I look forward to the Winter Es period to see how well everything will perform. I plan to post more information about the performance of our new antennas once we have some better Es openings.

Fred, AB1OC

The post 6m Antenna Upgrade Part 5 – Antenna Installation and Station Integration appeared first on Our HAM Station.

6m Antenna Upgrade Part 4 – Building Antennas and Prep for Installation

By: fkemmerer
3 November 2022 at 20:10
First 3 Element LFA Antenna on the Tower

First 3 Element LFA Antenna on the Tower

Our new Loop Fed Array (LFA) antennas, phasing lines, and power dividers have arrived from InnoVAntennas. Our plan for this phase of our project includes the following steps:

  • Build mounts for the stack Power Dividers
  • Design and a mounting and truss system for the 3 Element LFA yagis in our stacks
  • Build the first 3-element LFA yagis, test mount it on our Tower, and adjust the SWR
  • Build the additional ten 3-element LFA yagis
  • Build the 7-element LFA and adjust its SWR

Power Dividers

We are using Power Dividers from InnoVAntennas to construct our three new fixed stacks.

4-Port Power Divider for 50 MHz

4-Port Power Divider for 50 MHz

These units are very well made and perform well, but they did not come with a system to mount them on our tower. I decided to fabricate mounting clamps to attach the Power Dividers to the legs of our tower.

Custom Power Divider Mounting Clamp

Custom Power Divider Mounting Clamp

The clamps are made using stainless steel U-clamps and 1β€³ square aluminum tubing.

Power Divider Mount Test

Power Divider Mount Test

The mounts worked out quite well, allowing easy access to the connectors on the Power Dividers for attaching coax cables. I made up three sets of clamps to mount the power dividers in our stacks.

3-Element LFA Mounting System

The 3-Element LFA antennas that we are using are a custom variation of InnoVAntennas 3-element LFA design. The antennas are designed to be rear-mounted to a pair of legs on a rotating tower. We are using the antennas on a fixed tower, and we want to be able to adjust the direction they point in. To accomplish this, I decided to fabricate an adjustable system suggested by Matt Strewlow, KC1XX, using a 1/4β€³ threaded stainless steel rod.

3 Element LFA Mounting System Mock Up

3 Element LFA Mounting System Mock Up

I began by assembling the boom and clamps for one of the 3-element LFA antennas and attaching it to our tower. This allowed me to fabricate and test an adjustable rear clamp to orient the antennas. The clamps and hardware are made from aluminum and stainless steel. The components came from DX Engineering and our local hardware store.

Adjustable LFA Antenna Mounting System

Adjustable LFA Antenna Mounting System

The final step in this part of the project was to install a small eye bolt near the front of the booms and create a simple clamp to attach a boom truss (dacron) rope and a turnbuckle to support the front of the antennas.

Boom Truss Attachment Clamp

Boom Truss Attachment Clamp

Once everything fit and worked properly, I made up 11 sets of mounting hardware to support all of our 3-element LFA yagis.

3-Element LFA Assembly and Test

The next step was to assemble the first 3-Element LFA yagi. These antennas are well-made and go together easily. I assembled the boom, mounting attachments, and the center of the elements in my shop and then moved the antenna outdoors to complete the assembly and final adjustments.

3 Element LFA Assembly

3 Element LFA Assembly

I attached and sealed the phasing lines to the driven elements and checked the SWR with the antenna pointing skyward. Next, I adjusted the length of the driven element loop ends to get each antenna’s SWR where I wanted it.

First 3 Element LFA Antenna on the Tower

First 3 Element LFA Antenna on the Tower

I mounted the first antenna on the tower to confirm that my mounting system worked as planned and to check the SWR adjustment with the antenna at its installed height above ground.

First 3 Element LFA Antenna - Installed SWR

First 3 Element LFA Antenna – Installed SWR

As you can see from the analyzer image above, the antenna tuned up very well.

6m Antenna Farm

The only real problem I encountered was finding enough space to store all 11 antennas after they were assembled and tested. As you can see from the photo above, we had quite an β€œantenna farm” in our backyard during this part of our project.

7-Element LFA Assembly and Test

The final part of this phase of the project was to assemble the new 7-element LFA yagi. This antenna uses a curved reflector to further improve its pattern and lower its noise temperature.

7 Element LFA - Boom and Element Centers

7 Element LFA – Boom and Element Centers

I had just enough room in our workshop to assemble the antenna’s boom, mast clamp, truss components, and element centers.

7 Element LFA - Final Assembly

7 Element LFA – Final Assembly

I moved the antenna outdoors, where we had more room to complete the final assembly, and attached the feedline. I adjusted the SWR of the antenna with the front elevated skyward. Final SWR and driven element adjustments were made with the antenna suspended about 30 ft above the ground on a tram line.

Next Steps

The final step in our preparations was to run control cables from our shack to the junction box on our towers to enable our microHam system to control the remote Preamp Housing and Antenna Switch.

The next step in our project will be to install everything on our towers and integrate all the antennas and components into our station.

We’ll continue to post more articles in this series as our project proceeds. Here are some links to other articles in our series about our 6m Antenna Upgrade Project:

With all of our preparations complete, we are ready to install our new antennas on our tower.

Fred, AB1OC

The post 6m Antenna Upgrade Part 4 – Building Antennas and Prep for Installation appeared first on Our HAM Station.

❌
❌